K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

Tập xác định: D = R

y'= 4x3 – 4x.

y' = 0 ⇔ 4x3 – 4x = 0 ⇔ 4x.(x – 1)(x + 1) = 0 ⇔ Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Bảng biến thiên:

Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số nghịch biến trong các khoảng (-∞ ; -1) và (0 ; 1); đồng biến trong các khoảng (-1 ; 0) và (1; +∞).

9 tháng 11 2019

Tập xác định: D = R

y'= -3x2 + 2x

y' = 0 ⇔ -3x2 + 2x = 0 ⇔ x.(-3x + 2) = 0 ⇔ Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Bảng biến thiên:

Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số nghịch biến trong các khoảng (-∞ ; 0) và (2/3 ; + ∞), đồng biến trong khoảng (0 ; 2/3).

8 tháng 4 2018

TXĐ: R

y′ = 6x − 24 x 2  = 6x(1 − 4x)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' > 0 trên khoảng (0; 1/4) , suy ra y đồng biến trên khoảng (0; 1/4)

y' < 0 trên các khoảng (- ∞ ; 0 ); (14; + ∞ ), suy ra y nghịch biến trên các khoảng (- ∞ ;0 ); (14;+ ∞ )

1 tháng 8 2017

Tập xác định : D = R

y' = 3 – 2x

y’ = 0 ⇔ 3 – 2x = 0 ⇔ x = Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Ta có bảng biến thiên:

Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đồng biến trong khoảng (-∞; 3/2) và nghịch biến trong khoảng (3/2 ; + ∞).

30 tháng 9 2017

Tập xác định : D = R

y' = x2 + 6x - 7

y' = 0 ⇔ x = -7 hoặc x = 1

Ta có bảng biến thiên:

Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đồng biến trong các khoảng (-∞ ; -7) và (1 ; +∞); nghịch biến trong khoảng (-7; 1).

15 tháng 9 2019

TXĐ: R

y′ = 3 x 2  − 12x + 9

y' = 0

y' > 0 trên các khoảng (- ∞ ; 1), (3; + ∞ ) nên y đồng biến trên các khoảng (- ∞ ; 1), (3; + ∞ )

y'< 0 trên khoảng (1; 3) nên y nghịch biến trên khoảng (1; 3)

29 tháng 9 2017

TXĐ: R

y′ = 4 x 3  + 16 = 4x( x 2  + 4)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' > 0 trên khoảng (0; + ∞ ) ⇒ y đồng biến trên khoảng (0; + ∞ )

y' < 0 trên khoảng (- ∞ ; 0) ⇒ y nghịch biến trên khoảng (- ∞ ; 0)

21 tháng 6 2021

kiểu bài này có đáp án trên mạng rồi ấy ạ, anh/chị/ bạn nào mà xem qua đáp án trên mạng có thể giải thích kĩ hơn giúp em chỗ cos 1/x >0 về đoạn sau được không ạ, chứ ai đọc mãi mà không hiểu được 😭😭

NV
22 tháng 6 2021

Bất phương trình lượng giác:

\(cos\left(X\right)\ge a\Leftrightarrow-arccos\left(a\right)+k2\pi\le X\le arccos\left(a\right)+k2\pi\)

Vậy BPT: \(cos\left(\dfrac{1}{x}\right)>0\)

\(\Leftrightarrow-\dfrac{\pi}{2}+k2\pi\le\dfrac{1}{x}\le\dfrac{\pi}{2}+k2\pi\) với \(k\ge1\)

Nghịch đảo: \(\dfrac{2}{k4\pi-\pi}\le x\le\dfrac{2}{k4\pi+\pi}\)

5 tháng 7 2017

Xét hàm số y = sin(1/x) với x > 0.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải bất phương trình sau trên khoảng (0; + ∞ ):

Giải sách bài tập Toán 12 | Giải sbt Toán 12 

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, hàm số đồng biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Và nghịch biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

với k = 0, 1, 2 …