Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có: l = k λ 2 = k v 2 f ⇒ f = k v 2 l = k . 40 2 . 1 , 5 = 40 3 k
Tần số có giá trị từ 30Hz đến 100Hz ⇒ 30 ≤ 40 3 k ≤ 100 ⇒ 2 , 25 ≤ k ≤ 7 , 5 ⇒ k = 3 ; 4 ; 5 ; 6 ; 7
Để tạo được sóng dừng trên dây với số nút nhiều nhất (ứng với k = 7) thì ⇒ f = 40 3 . 7 = 93 , 33 H z
Chọn đáp án C
@ Lời giải:
+ Nếu hai nguồn sóng cùng pha thì những điểm cực tiểu giao thoa nằm tại vị trí: d 2 − d 1 = k + 0,5 λ với k nguyên
Đáp án A
Phương pháp: Điều kiện có sóng dừng trên dây hai đầu cố định l = kλ/2 (k là số bó sóng)
Cách giải: Ta có:
l = k λ 2 = 4 . v 2 f = 2 v f ⇒ v = lf 2 = 100 . 40 2 = 20 m / s .
Đáp án C
+ Bước sóng: λ = v/f = 0,6/40 = 1,5cm
+ Số cực đại giao thoa trên đoạn thẳng nối hai nguồn bằng số giá trị k nguyên thoả mãn:
- A B λ < k < A B λ ⇔ - 10 1 , 5 < k < 10 1 , 5 ⇔ - 6 , 67 < k < 6 , 67 ⇒ k = 0 ; ± 1 , ± 2 , . . . . , ± 6
+ Ta có: S A M B = 1 2 A B . M B ⇒ ( S A M B ) m i n ⇔ ( M B ) m i n ⇔ M thuộc cực đại ứng với kmax => d1 – d2 = 6λ = 9cm.
+ Áp dụng định lí Pi – ta – go trong tam giác vuông AMB có:
A B 2 + d 2 2 = d 1 2 ⇔ 10 2 + d 2 2 = ( d 2 + 9 ) 2 ⇒ d 2 = 19 18 c m = M B ⇒ S A M B = 1 2 A B . M B = 1 2 . 10 . 19 18 = 5 , 28 c m 2
Cứ giữa 2 bụng liên tiếp có 2 điểm dao động biên độ 2√⇒ 20 điểm thì k=10
Vậy λ=2cm
A B M 100cm
Gọi $MB=x$ .
Do M dao động cực tiểu nên ta có: $\Delta d=\sqrt{x^2+100^2}-x=k\lambda $ với $\lambda =v.T=30cm$.
Bình phương ta được :$100^2+x^2=(x+30k)^2\Leftrightarrow x=\dfrac{100^2-900k^2}{60k}$
Điều kiện :$x\geq 0\Leftrightarrow k\leq \dfrac{10}{3}$(chỉ xét với k dương, k âm tương tự).
Hiệu khoảng cách tới 2 nguồn nhỏ nhất khi điểm sáng đó trên vân bậc cao nhất tức là: $k=3\Rightarrow x=\dfrac{95}{9}cm$
Chọn A.
Khi sóng truyền trên sợi dây AB.
+ Nếu đầu B giữ cố định thì sóng phản xạ ngược pha với sóng tới.
+ Nếu đầu B tự do thì sóng phản xạ cùng pha với sóng tới.
--> Chọn đáp án B.