Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp:
Công thức tính xác suất của biên cố A là: P A = n A n Ω
Gọi A là biến cố: “Chọn ngẫu nhiên 3 phần tử của tập S sao cho tổng của 3 phần tử chia hết cho 3”.
Trong tập hợp S có 5 số chia hết cho 3 là
TH4: Trong 3 số a, b, c có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2
Trong các số đã cho ít nhất có 1 số dương vì nếu trái lại tất cả đều là số âm thì tổng của 5 số bất kỳ trong chúng sẽ là số âm trái với giả thiết.
Tách riêng số dương đó còn 30 số chi làm 6 nhóm. Theo đề bài tổng các số của mỗi nhóm đều là số dương nên tổng của 6 nhóm đều là số dương và do đó tổng của 31 số đã cho đều là số dương.
Vì tổng của 5 số bất kì là một số nguyên dương nên trong 31 số phải có ít nhất 1 số nguyên dương.
Vậy số các nguyên còn lại là: 31-1=30 (số nguyên)
Ta chia 30 số nguyên này ra thành 6 nhóm, mỗi nhóm gồm 5 số nguyên. Theo đề bài, ta có tổng của 5 số nguyên bất kì là 1 số nguyên dương, vậy tổng của 6 nhóm mà mỗi nhóm có 5 số nguyên là 1 số dương => 30 số nguyên còn lại là số dương.
Vì tổng của 30 số hạng là 1 số nguyên dương, mà số còn lại cũng là số nguyên dương nên tổng 31 số là số nguyên dương => đpcm.
Số các số nguyên dương thỏa mãn bài toán lập thành một cấp số cộng với số hạng đầu u 1 = 3 và công sai d = 3
Do đó
Chọn C.