Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi \(A\left(1;-1\right)\) và \(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)
Gọi \(M\left(-2;-1\right)\) và \(N\left(3;-2\right)\) và \(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN
Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d
Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng
Phương trình đường thẳng d' qua M và vuông góc d có dạng:
\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)
\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)
Bài 2:
Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)
\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I
\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)
Câu 3:
\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)
\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)
Câu 4
\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)
\(=5m+3-\left(m^2+m-6\right)i\)
Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
Câu 5:
\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)
Câu 6:
\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)
\(\Rightarrow b=12\)
Câu 7:
\(w=\left(1-i\right)^2z\)
Lấy môđun 2 vế:
\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)
Câu 8:
\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)
\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)
Tập hợp các điểm biểu diễn các số phức z là các hình sau:
a) Ta có x = 1, y tùy ý nên tập hợp các điểm biểu diễn z là đường thẳng x = 1 (hình a)
b) Ta có y = -2, x tùy ý nên tập hợp các điểm biểu diễn z là đường thẳng y = -2 (hình b)
c) Ta có x ∈ [-1, 2] và y ∈ [0, 1] nên tập hợp các điểm biểu diễn z là hình chữ nhật sọc (hình c)
d) Ta có:
|z|≤2⇔√x2+y2≤2⇔x2+y2≤4|z|≤2⇔x2+y2≤2⇔x2+y2≤4
Vậy tập hợp các điểm biểu diễn z là hình tròn tâm O (gốc tọa độ) bán kính bằng 2 (kể cả các điểm trên đường tròn) (hình d)
Giải:
Đặt \(z=a+bi\) với $a,b$ là các số thực
Ta có:
\(|z-3+4i|=2\Leftrightarrow |(a-3)+i(b+4)|=2\)
\(\Leftrightarrow (a-3)^2+(b+4)^2=4\)
Vậy tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \((3;-4)\) bán kính \(R=2\)
Giả sử z = x + yi, (x,y ε R), khi đó trên mặt phẳng toạ độ Oxy, điểm M(x;y) biểu diễn số phức z.
a) Ta có |z| = 1 ⇔ = 1 ⇔ x2 + y2 = 1.
Vậy tập hợp điểm biểu diễn số phức z là đường tròn tam O, bán kính bằng 1
b) Ta có |z| ≤ 1 ⇔ ≤ 1 ⇔ x2 + y2 ≤ 1.
Vậy tập hợp điểm biểu diễn số phức z là hình tròn tâm O, bán kính bằng 1 (kể cả các điểm trên đường tròn) (hình b)
c) Ta có 1 < |z| ≤ 2 ⇔ 1 < ≤ 2 ⇔ 1 < x2 + y2 ≤ 4.
Vậy tập hợp điểm biểu diễn số phức z là phần nằm giữa đường tròn tâm O, bán kính bằng 1 (không kể điểm trên đường tròn này) và đường tròn tâm O, bán kính bằng 2 (kể cả các điểm trên đường tròn này)
d) Ta có |z| = 1 ⇔ = 1 ⇔ x2 + y2 = 1 và phần ảo của z bằng 1 tức y = 1. Suy ra x = 0 và y = 1
Vậy tập hợp các điểm cần tìm là điểm A(0;1)
a/ \(y'=4x^3-2mx=2x\left(2x^2-m\right)\)
Do \(a=1>0\Rightarrow\)nếu \(m>0\Rightarrow\) hàm số có 1 khoảng đồng biến là \(\left(\sqrt{\frac{m}{2}};+\infty\right)\)
\(\Rightarrow\sqrt{\frac{m}{2}}\le2\Rightarrow0< m\le8\)
Vậy \(m\le8\) \(\Rightarrow\) có 8 giá trị nguyên dương
Bài 2:
\(1\le\sqrt{a^2+b^2}\le2\Rightarrow1\le a^2+b^2\le4\)
\(\Rightarrow\) Tập hợp \(z\) là hình vành khuyên giới hạn bởi 2 đường tròn có tâm là gốc tọa độ và bán kính lần lượt là 1 và 2
\(\Rightarrow S=\pi.2^2-\pi.1^2=3\pi\)
Bài 3: Không thấy câu hỏi đâu hết, chỉ thấy gọi số phức z mà ko thấy yêu cầu làm gì với nó cả :(
Bài 4:
Do \(A\in d_1:\left\{{}\begin{matrix}x=2+t\\y=3+t\\z=3-2t\end{matrix}\right.\) \(\Rightarrow A\left(a+2;a+3;3-2a\right)\)
\(\Rightarrow\overrightarrow{CA}=\left(a-1;a+1;-2a\right)\)
Do \(d_2\perp AC\Rightarrow\overrightarrow{CA}.\overrightarrow{u_{d2}}=0\)
\(\Rightarrow1\left(a-1\right)-2\left(a+1\right)+1\left(-2a\right)=0\)
\(\Rightarrow-3a=3\Rightarrow a=-1\)
\(\Rightarrow x_A=a+2=1\)
Bài 1)
Gọi số phức $z$ có dạng \(z=a+bi(a,b\in\mathbb{R})\).
Ta có \(|z|+z=3+4i\Leftrightarrow \sqrt{a^2+b^2}+a+bi=3+4i\)
\(\Rightarrow\left\{\begin{matrix}\sqrt{a^2+b^2}+a=3\\b=4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=\frac{5}{6}\\b=4\end{matrix}\right.\)
Vậy số phức cần tìm là \(\frac{5}{6}+4i\)
b)
\(\left\{\begin{matrix} z_1+3z_1z_2=(-1+i)z_2\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{z_1}{z_2}+3z_1=-1+i\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \frac{z_1}{z_2}+z_1+z_2=(-1+i)-(3+2i)=-4-i\)
\(\Leftrightarrow w=-4-i\Rightarrow |w|=\sqrt{17}\)
a) Tập hợp các điểm M(x; y) của mặt phẳng tọa độ biểu diễn số phức z = x +yi thỏa mãn điều kiện:
|z|<2 ⇔ √(x2+y2 )<2 ⇔x2+y2<4
Các điểm M(x; y) như vậy nằm trong đường tròn có tâm O bán kính bằng 2 không kể các điểm trên đường tròn.
b) Giả sử z=x+yi=>z-i=z+(y-1)i
|z-1|≤1 ⇔ √(x2 (y-1)2 )≤1 ⇔x2+(y-1)2≤1
Tập hợp tất cả các điểm biểu diễn các số phức thỏa mãn |z – 1|≤1 là các điểm của hình tròn tâm (0; 1) bán kính bằng 1 kể cả biên.
c) z=x+yi=>z-1-i=(x-1)+(y-1)i
|z-1-i|<1 ⇔ (x-1)2+(y-1)2<1
Tập hợp các điểm đang xét là các điểm của hình tròn ( không kể biên) tâm (1;1), bán kính bằng 1.
Em chỉ thử sức thôi chứ em cũng không rõ lắm ạ
đặt z = x +yi
a) \(\left|Z\right|\)<2
<=> \(\left|x+yi\right|\)<2 <=> \(\sqrt{x^2+y^2}\)<2 <=> x2 +y2 <4
vậy tập hợp biểu diễn số phức Z là đường tròn tâm I(0;0) bán kính R=2 không tính biên
b) \(\left|z-i\right|\)\(\le\)1
\(\Leftrightarrow\)\(\left|x +yi-i\right|\le1\Leftrightarrow\sqrt{x^2+\left(y-1\right)^2}\le1\)
\(\Leftrightarrow x^2+\left(y-1\right)^2\le1\)
vậy tập hợp biểu diễn số phức Z là đường tròn tâm I(0,1) bán kính R=1 tính cả biên
c) \(\left|z-1-i\right|\)<1
\(\Leftrightarrow\left|x+yi-1-i\right|< 1\\ \Leftrightarrow\sqrt{\left(x-1\right)^2+\left(y-1\right)^2}< 1\\ \Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2< 1\)
vậy tập hợp biểu diễn số phức Z là đường tròn tâm I(1;1) bán kính R=1 không tính biên
Nên O là tâm đường tròn ngoại tiếp tam giác ABC.
Vậy tam giác ABC có trọng tâm đồng thời là tâm đường tròn ngoại tiếp nên tam giác ABC đều.
Chọn D.