Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tập hợp xét là 100 số tự nhiên đâu tiên nên tổng các chữ số của 1 số trong đó nhỏ nhất bằng 0 (chính là số 0) và lớn nhất bằng 9 + 9 = 18
như vậy tổng các chữ số của 1 số có thể nhận các giá trị từ 0; 1; 2;...;18. Tức là, k \(\in\) {0;1;2;...;18}
Để số lượng các số có tổng chữ số bằng nhau là lớn nhất thì mỗi số \(\in\) {0;1;2;...;18} có nhiều cách phân tích thành tổng của hai chữ số nhất
dễ dàng loại ngay 0;1; 2;3;
4 = 4 + 0 = 3 + 1 = 2+ 2
5 = 5 + 0 = 4 + 1 = 2 + 3
6 = 6 + 0 = 5 + 1 = 4 + 2 = 3 + 3
7 = 7 + 0 = 6 + 1 = 5 + 2 = 4 + 3
8 = 8 + 0 = 7 + 1 = 6 + 2 = 5 + 3 = 4 + 4
9 = 9 + 0 = ...= 5 + 4
10 = 9 + 1 = 8 + 2 = 7 + 3 = 6 + 4 = 5 + 5
11 = 9 + 2 = 8 + 3 = 7 + 4 = 6 + 5
12 = 8 + 4 = 7 + 5 = 6 + 6
....18 = 9 + 9
=> Với k = 8 hoặc k = 10 có nhiều cách phân tích nhất , ứng với 5 số
Vậy k = 8 hoặc k = 10
Trong dãy 1;3;5;...;199 có 45 số nguyên tố.
Vậy chọn k=46 thỏa mãn đề bài
Gọi tổng các chữ số của A là (S)
Trong dãy số 1;2;3...;100
Ta bỏ riêng số 100 ra và lập thành một dãy mới:
0;1;2;...;99 (*)
Ta ghép thành từng cặp:
(0;99);(1;98);(2;97);...;(49;50)
Tổng các chữ số của 2 số trong một cặp là:18
Do đó tổng các chữ số của các số trong (*) là: 18.50 = 900
Suy ra S(A) = 900+1 = 901 ( vì số một trăm có đồng dư chữ số là 1 )
Suy ra S(A) chia cho 9 dư 1
Suy ra A ko chia hết cho 9 suy ra A ko chia hết cho 2007 (vì 2007 chia hết cho 9 )
PHẦN B
Ta thấy một tổng luôn đồng dư với tổng các chữ số của các số hạng khi chia cho cho 9.Do đó B đồng dư với A khi chia cho 9
Suy ra B chi cho 9 dư 1
Suy ra B ko chia hết cho cho 9 suy ra B ko chia hết cho 2007
em vào mục câu hỏi tương tự nhé
đúng đấy