\(A\cap B\) với :

a) \(A=\left[1;5\right];B...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

a) (\(-\infty;0\)] \(\cup\left[1;2\right]\cup\) [\(3;+\infty\))

b) (\(-\infty;4\)] \(\cup\) [\(5;+\infty\))

c) \(\left(-2;1\right)\cup\left(3;7\right)\)

d) (\(-1;1\)] \(\cup\) [\(4;5\))

16 tháng 5 2017

a) Sai

b) Sai

c) Đúng

d) Sai

2 tháng 8 2018

a) Sai;

b) Sai;

c) Đúng;

d) Sai;

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:

$A\cap B\cap C=A\cap (B\cap C)$

Để tập hợp trên khác rỗng thì trước hết $B\cap C\neq \varnothing$

Điều này xảy ra khi $2m>m\Leftrightarrow m>0$

Khi đó: $B\cap C=(m; 2m)$

$\Rightarrow A\cap B\cap C=((-3;-1)\cup (1;2))\cap (m; 2m)$

$=((-3;-1)\cap (m;2m))\cup ((1;2)\cap (m; 2m))$

$=(1;2)\cap (m; 2m)$ (do $m>0$)

Để $(1;2)\cap (m; 2m)\neq \varnothing$ thì:

\(\left\{\begin{matrix} 2m>1\\ m< 2\end{matrix}\right.\Leftrightarrow m\in (\frac{1}{2};2)\)

Vậy...........

16 tháng 5 2017

a) \(\left(A\cap B\right)\cup A=A\)

b) \(\left(A\cup B\right)\cap B=B\)

c) (\(A\)\ \(B\)) \(\cup B=A\cup B\)

d) (\(A\)\ \(B\)) \(\cap\)(\(B\)\\(A\)) \(=\varnothing\)

2 tháng 4 2017

a) [-3;1) ∪ (0;4] = [-3; 4]

b) (0; 2] ∪ [-1;1) = [-1; 2]

c) (-2; 15) ∪ (3; +∞) = (-2; +∞)