Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)
\(\Leftrightarrow-5m-4< 0\)
\(\Leftrightarrow m>-\dfrac{4}{5}\)
b.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)
\(\Leftrightarrow-3m+7\le0\)
\(\Rightarrow m\ge\dfrac{7}{3}\)
c.
\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)
\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)
ĐKXĐ
\(mx^4+mx^3+\left(m+1\right)x^2+mx+1\)
\(=\left(mx^4+mx^3+mx^2+mx\right)+\left(x^2+1\right)\)
=\(mx\left(x^3+x^2+x+1\right)+\left(x^2+1\right)\)
\(=mx\left(x+1\right)\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+1\right).\left[mx\left(x+1\right)+1\right]>0\left(\forall x\right)\)
\(=>mx^2+mx+1>0\left(\forall x\right)\)
\(=>PT\hept{\begin{cases}mx^2+mx+1=0\left(zô\right)nghiệm\forall x\\m>0\end{cases}}\)
\(\hept{\begin{cases}\Delta< 0\\m>0\end{cases}=>\hept{\begin{cases}m^2-4m< 0\\m>0\end{cases}=>\hept{\begin{cases}m\left(m-4\right)< 0\\m>0\end{cases}=>0< m< 4}}}\)
=> m có 3 giá trị là 1,2,3 nha
a) Hàm số \(y = 2x + 1\) cho bằng công thức \(2x + 1\) nên \(2x + 1\) là biểu thức xác định của hàm số.
b) Hàm số \(y = \sqrt {x - 2} \) cho bằng công thức \(\sqrt {x - 2} \) nên \(\sqrt {x - 2} \) là biểu thức xác định của hàm số.
Hàm có TXĐ là R khi và chỉ khi: \(\left(m-2\right)x^2+\left(m-2\right)x+4\ge0;\forall x\)
- Với \(m=2\) thỏa mãn
- Với \(m\ne2\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-2>0\\\Delta=\left(m-2\right)^2-16\left(m-2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>2\\\left(m-2\right)\left(m-18\right)\le0\end{matrix}\right.\) \(\Rightarrow2< m\le18\)
Kết hợp lại ta được: \(2\le m\le18\)
Để hàm số y = f(x) = \(\frac{2x-3}{x^2-\left(2m-1\right)x+m^2}\) xác định trên \(ℝ\)khi và chỉ khi \(x^2-\left(2m-1\right)x+m^2\ne0\), \(\forall x\inℝ\)
Nghĩa là \(x^2-\left(2m-1\right)x+m^2=0\) vô nghiệm
<=> \(\Delta< 0\)
<=> \(\left(2m-1\right)^2-4m^2< 0\)
<=> \(-4m+1< 0\)
<=> m > 1/4.