Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ \(\Leftrightarrow-4< \frac{-2x^2-mx+4}{x^2-x+1}< 6\)
Do \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x nên BPT tương đương:
\(-4\left(x^2-x+1\right)< -2x^2-mx+4< 6\left(x^2-x+1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-\left(m+4\right)x+8>0\\8x^2+\left(m-6\right)x+2>0\end{matrix}\right.\)
Cả 2 BPT đều đúng với mọi x khi và chỉ khi:
\(\left\{{}\begin{matrix}\Delta_1=\left(m+4\right)^2-64< 0\\\Delta_2=\left(m-6\right)^2-64< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+8m-48< 0\\m^2-12m-28< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-12< m< 4\\-2< m< 14\end{matrix}\right.\) \(\Rightarrow-2< m< 4\)
c/ Do \(2x^2-3x+2=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}>0\) với mọi x, BPT tương đương:
\(-\left(2x^2-3x+2\right)\le x^2+5x+m< 7\left(2x^2-3x+2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+5x+m\ge-2x^2+3x-2\\14x^2-21x+14>x^2+5x+m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+2x+m+2\ge0\\13x^2-26x-m+14>0\end{matrix}\right.\)
Để 2 BPT đều đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}4-12\left(m+2\right)\le0\\13^2-13\left(-m+14\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-20\le12m\\-13+13m< 0\end{matrix}\right.\) \(\Rightarrow-\frac{5}{3}\le m< 1\)
TXĐ:D=R
bpt nghiệm đúng với mọi x \(\in\)R
\(\Leftrightarrow-1\le\frac{x^2+5x+a}{2x^2-3x+2}<7\) với mọi \(x\in R\)
\(\Leftrightarrow\begin{cases}x^2+5x+a<7\left(2x^2-3x+2\right)\\x^2+5x+a\ge-\left(2x^2-3x+2\right)\end{cases}\) với mọi \(x\in R\)
\(\Leftrightarrow\begin{cases}13x^2-26x+14-a>0\\3x^2+2x+a+2\ge0\end{cases}\) với mọi \(x\in R\)
\(\Leftrightarrow\begin{cases}\Delta1<0;a1=13>0\\\Delta2\le0;a2=3>0\end{cases}\)
\(\Leftrightarrow\begin{cases}13^2-13\left(14-a\right)<0\\1^2-3\left(a+2\right)\le0\end{cases}\)
\(\Leftrightarrow\begin{cases}a<1\\a\ge\frac{-5}{3}\end{cases}\)
Kết hợp 2 ĐK rồi KL.
\(\frac{x^2+5x+a}{2x^2-3x+2}\ge-1\Leftrightarrow\frac{x^2+5x+a}{2x^2-3x+2}+1\ge0\Leftrightarrow\frac{3x^2+2x+a+2}{2x^2-3x+2}\ge0\)
\(\Leftrightarrow3x^2+2x+a+2\ge0\) \(\forall x\) (do \(2x^2-3x+2=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}>0\))
\(\Rightarrow\Delta'=1-3\left(a+2\right)=-5-3a\le0\Rightarrow a\ge\frac{-5}{3}\) (1)
Lại có: \(\frac{x^2+5x+a}{2x^2-3x+2}\le7\Leftrightarrow\frac{x^2+5x+a}{2x^2-3x+2}-7\le0\Leftrightarrow\frac{-13x^2+26x+a-14}{2x^2-3x+2}\le0\)
\(\Leftrightarrow-13x^2+26x+a-14\le0\) \(\forall x\)
\(\Rightarrow\Delta'=169+13\left(a-14\right)\le0\Rightarrow a\le-1\) (2)
Kết hợp (1) và (2) ta được: \(\frac{-5}{3}\le a\le-1\)
a) y xác định \(\Leftrightarrow2x^2-5x+2\ne0\Leftrightarrow\left(x-2\right)\left(2x-1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\2x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne\frac{1}{2}\end{matrix}\right.\). Vậy tập xác định D = R / { 2; 1/2}
b) y xác định \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\2x+4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge-2\end{matrix}\right.\).
Vậy tập xác định D = \([-2;+\infty)/1\)
y xác định \(\Leftrightarrow x^2-3x+m-1\ne0\forall x\in R\)
suy ra phương trình x2 - 3x + m - 1 = 0 vô nghiệm
\(\Rightarrow\Delta=9-4\left(m-1\right)< 0\Leftrightarrow9-4m+4< 0\Leftrightarrow m>\frac{13}{4}\)
\(\Rightarrow m\in\left(\frac{13}{4};+\infty\right)\)
A = \(\frac{3x}{2}+\frac{2}{x-1}=3.\frac{x-1}{2}+\frac{2}{x-1}+\frac{3}{2}\)\(\ge2\sqrt{3}+\frac{3}{2}\)
\(\Rightarrow\)min A = \(2\sqrt{3}+\frac{3}{2}\Leftrightarrow x=\frac{2}{\sqrt{3}}+1\)(thỏa mãn)
B = \(x+\frac{3}{3x-1}=\frac{1}{3}\left(3x-1+\frac{9}{3x-1}+1\right)\)\(\ge\frac{1}{3}\left(2\sqrt{9}+1\right)=\frac{7}{3}\)
\(\Rightarrow\)min B = \(\frac{7}{3}\Leftrightarrow x=\frac{4}{3}\)
\(A\) \(=\) \(3x^2\left(8-x^2\right)\le3\frac{\left(x^2+8-x^2\right)^2}{4}=48\)
\(\Rightarrow\) maxA = 48 \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)(thỏa mãn)
\(B=\) \(4x\left(8-5x\right)\)\(=\frac{4}{5}.5x\left(8-5x\right)\le\frac{4}{5}.\frac{\left(5x+8-5x\right)^2}{4}=\frac{64}{5}\)
\(\Rightarrow\)max B = \(\frac{64}{5}\Leftrightarrow x=\frac{4}{5}\)(thỏa mãn)