Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+2\left(m+3\right)x+4m+12=0\left(1\right)\end{matrix}\right.\)
Để pt đã cho có 3 nghiệm pb lớn hơn -1 \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb thỏa mãn \(\left\{{}\begin{matrix}x_1;x_2\ne1\\-1< x_1< x_2\end{matrix}\right.\)
\(a+b+c\ne0\Leftrightarrow1+2m+6+4m+12\ne0\Rightarrow m\ne-\frac{19}{6}\)
\(\Delta'=\left(m+3\right)^2-\left(4m+12\right)>0\Leftrightarrow m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+3\right)\\x_1x_2=4m+12\end{matrix}\right.\)
\(-1< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m+12-2m-6+1>0\\-2\left(m+3\right)>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\frac{7}{2}\\m< -2\end{matrix}\right.\) \(\Rightarrow-\frac{7}{2}< m< -2\)
Vậy \(\left\{{}\begin{matrix}-\frac{7}{2}< m< -3\\m\ne-\frac{19}{6}\end{matrix}\right.\)
Lời giải:
a) Đặt \(x^3=a\) thì pt trở thành:
\(a^2+2003a-2005=0\)
\(\Leftrightarrow (a+\frac{2003}{2})^2=2005+\frac{2003^2}{2^2}=\frac{4020029}{4}\)
\(\Rightarrow \left[\begin{matrix} a+\frac{2003}{2}=\sqrt{\frac{4020029}{4}}\\ a+\frac{2003}{2}=-\sqrt{\frac{4020029}{4}}\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} a=\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx 1\\ a=-\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx -2004\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\sqrt[3]{a}\approx 1\\ x=\sqrt[3]{a}\approx \sqrt[3]{-2004}\end{matrix}\right.\)
b)
Đặt \(x^2=a(a\geq 0)\)
PT trở thành: \(\sqrt{2}a^2-2(\sqrt{2}+\sqrt{3})a+\sqrt{12}=0\)
\(\Delta'=(\sqrt{2}+\sqrt{3})^2-\sqrt{2}.\sqrt{12}=5\)
Theo công thức nghiệm của pt bậc 2 thì pt có 2 nghiệm:
\(\left\{\begin{matrix} a_1=\frac{(\sqrt{2}+\sqrt{3})+\sqrt{5}}{\sqrt{2}}\\ a_2=\frac{(\sqrt{2}+\sqrt{3})-\sqrt{5}}{\sqrt{2}}\end{matrix}\right.\)
Do đó \(x=\pm \sqrt{a}\in\left\{\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{\sqrt{2}}};\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\sqrt{2}}}\right\}\)
Câu 2:
Đặt \(x^2=a\). PT ban đầu trở thành:
\(a^2+a+m=0(*)\)
\(\bullet \)Để pt ban đầu có 3 nghiệm pb thì $(*)$ phải có một nghiệm $a=0$ và một nghiệm $a>0$
Để $a=0$ là nghiệm của $(*)$ thì \(0^2+0+m=0\Leftrightarrow m=0\)
Khi đó: \((*)\Leftrightarrow a^2+a=0\). Ta thấy nghiệm còn lại là $a=-1< 0$ (vô lý)
Do đó không tồn tại $m$ để pt ban đầu có 3 nghiệm pb.
\(\bullet\) Để pt ban đầu có 4 nghiệm pb thì $(*)$ phải có 2 nghiệm dương phân biệt
Mà theo định lý Viete, nếu $(*)$ có 2 nghiệm pb $a_1,a_2$ thì:\(a_1+a_2=-1< 0\) nên 2 nghiệm không thể đồng thời cùng dương.
Vậy không tồn tại $m$ để pt ban đầu có 4 nghiệm phân biệt.
Phương trình luôn có 1 nghiệm \(x=1\)
Xét \(x^2+2\left(m+3\right)x+4m+12=0\) (1)
Để pt đã cho có 3 nghiệm thỏa mãn yêu cầu thì (1) có 2 nghiệm pb khác 1 và lớn hơn -1
\(\Rightarrow\left\{{}\begin{matrix}\Delta'>0\\a+b+c\ne0\\-1< x_1< x_2\end{matrix}\right.\)
Ta có: \(\Delta'=m^2+6m+9-4m-12=m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)
\(a+b+c\ne0\Leftrightarrow1+2m+6+4m+12\ne0\Rightarrow m\ne-\frac{19}{6}\)
\(-1< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}\frac{x_1+x_2}{2}>-1\\\left(x_1+1\right)\left(x_2+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2>-2\\x_1x_2+x_1+x_2+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\left(m+3\right)>-2\\4m+12-2\left(m+3\right)+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m>-\frac{7}{2}\end{matrix}\right.\) \(\Rightarrow-\frac{7}{2}< m< -2\)
Kết hợp lại ta được: \(\left\{{}\begin{matrix}-\frac{7}{2}< m< -3\\m\ne-\frac{19}{6}\end{matrix}\right.\)
a/ Do \(a=2>0\) nên BPT đã cho có nghiệm với mọi m
b/
- Với \(m\le1\) BPT luôn có nghiệm
- Với \(m>1\) để BPT có nghiệm
\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m-1\right)\left(-m+2\right)\ge0\)
\(\Leftrightarrow2m^2+3m+11\ge0\)
\(\Leftrightarrow2\left(m+\frac{3}{4}\right)^2+\frac{79}{8}\ge0\) (luôn đúng)
Vậy BPT đã cho có nghiệm với mọi m
Đặt \(x^2+2x+3=t\)
\(\Rightarrow t^2-2t+4m-1=0\) (1)
Để pt ban đầu có 2 nghiệm=> pt (1) có nghiệm kép
\(\Rightarrow\Delta'=1-4m+1=0\Leftrightarrow m=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+2\left(m+3\right)x+4m+12=0\left(1\right)\end{matrix}\right.\)
Để pt có 3 nghiệm pb lớn hơn -1 \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb khác 1 và lớn hơn -1
\(a+b+c\ne0\Rightarrow1+2m+6+4m+12\ne0\Rightarrow m\ne-\frac{19}{6}\)
Để pt có 2 nghiệm pb
\(\Rightarrow\Delta'=\left(m+3\right)^2-4m-12>0\)
\(\Leftrightarrow m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)
Để pt có 2 nghiệm lớn hơn -1 \(\Leftrightarrow-1< x_1< x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m+12-2\left(m+3\right)+1>0\\-2\left(m+3\right)>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m+7>0\\m+3< 1\end{matrix}\right.\) \(\Rightarrow-\frac{7}{2}< m< -2\)
Kết hợp lại ta được:
\(\left\{{}\begin{matrix}-\frac{7}{2}< m< -3\\m\ne-\frac{19}{6}\end{matrix}\right.\)