Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: `{(x_1 < 1),(x_2 < 1):}=>(x_1 -1)(x_2 -1) > 0`
Phương trình có `2` nghiệm phân biệt
`=>\Delta > 0`
`<=>[-(m-1)]^2+4m > 0`
`<=>m^2-2m+4m+1 > 0`
`<=>m^2+2m+1 > 0<=>(m+1)^2 > 0`
`=>m+1 ne 0<=>m ne -1`
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=m-1),(x_1.x_2=c/a=-m):}`
Ta có: `(x_1 -1)(x_2 -1) > 0`
`<=>x_1 .x_2-(x_1 +x_2)+1 > 0`
`<=>-m-m+1+1 > 0`
`<=>m < 1`
Mà `m ne -1`
`=>m < 1,m ne -1`.
\(\Delta=\left(m-1\right)^2-4.\left(-m\right)\)
\(=\left(m^2-2m+1\right)+4m=\left(m+1\right)^2\)
Để pt có 2 nghiệm phân biệt => \(m\ne-1\)
\(\left[{}\begin{matrix}x_1=\dfrac{m-1+m+1}{2}=m\\x_2=\dfrac{m-1-m-1}{2}=-1\end{matrix}\right.\)
Để pt có 2 nghiệm phân biệt bé 1
\(\Rightarrow m< 1\)
x2-2(m-1)x+m2-3m=0
△'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1
áp dụng hệ thức Vi-ét ta được
x1+x2=2(m-1) (1)
x1*x2=m2-3m (2)
a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1
b) để PT có duy nhất một nghiệm âm thì x1*x2 <0
e) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\)(1)
\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)
Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)
a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)
Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)
Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.
Câu b mình nhìn không rõ đề, bạn sửa lại nhé.
a)(m-1)x2+2(m-1)x-m
pt bậc 2 có dạng ax2+bx+c=0.
a=(m-1);b=(m-1);c=-m
áp dụng b2-4ac.ta có:Denta=(m-1)2-4[(-m)*(m-1)]
Để pt có nghịm kép =>Denta=0
=>(m-1)2-4[(-m)*(m-1)]=0
=>m=1 hoặc m=0
Thay với m=1 vào và m=0 vào tự tính
b)Để pt có 2 nghiệm phân biệt thì Denta>0
=>(m-1)2-4[(-m)*(m-1)]>0
=>5m2-6m+1>0
Giải BPT này ra
à mk thêm 1 bước nữa để bạn giải cho nhẹ
5m2-6m+1>0
<=>(m-1)(5m-1)>0 tới đây học sinh lớp 6 cx có thể giải đc nhé chúc bạn học tốt
để pt trên có 2 nghiêm phân biệt thì Δ>0
hay [2(m+2)]^2-4(m+12)>0
<=>4m^2+16m+16-4m-48>0
<=>4m^2+12m-32>0
=>m^2+3m-8>0
<=>m^2+3m>8
<=>m>8/(m+3)
vậy khi m>8/(m+3) thì ot có 2 nghiệm phân biệt