K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 1 2024

Đặt \(cosx=t\in\left[-1;1\right]\)

\(\Rightarrow6t^2+\left(9m-7\right)t-6m+2=0\)

\(\Leftrightarrow6t^2-7t+2+9mt-6m=0\)

\(\Leftrightarrow\left(2t-1\right)\left(3t-2\right)+3m\left(3t-2\right)=0\)

\(\Leftrightarrow\left(3t-2\right)\left(2t+3m-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=\dfrac{2}{3}\\cosx=\dfrac{-3m+1}{2}\end{matrix}\right.\) 

(Chà tới đây mới thấy ko cần đặt ẩn phụ, nhìn con số 9m và 6m to 1 cách vô lý đã nghi nghi có gì đó bất thường trong nghiệm :D)

Pt \(cosx=\dfrac{2}{3}\) cho 1 nghiệm thuộc \(\left(0;\dfrac{\pi}{2}\right)\)

Để pt có 3 nghiệm pb thì \(cosx=\dfrac{-3m+1}{2}\) cho 2 nghiệm pb thuộc khoảng đã cho

Từ đường tròn lượng giác ta dễ dàng suy ra: \(-1< \dfrac{-2m+1}{2}< 0\)

 

22 tháng 1 2024

Anh ơi! Em thấy đặt ẩn phụ gọn hơn so với cosx. Theo anh không cần đặt ẩn phụ sẽ như nào vậy ạ anh! 

NV
22 tháng 12 2020

\(\Leftrightarrow\left(cosx+1\right)\left(4cos2x-m.cosx\right)=m\left(1-cosx\right)\left(1+cosx\right)\)

\(\Leftrightarrow4cos2x-m.cosx=m\left(1-cosx\right)\)

\(\Leftrightarrow4cos2x=m\)

\(\Rightarrow cos2x=\dfrac{m}{4}\)

Pt có đúng 2 nghiệm thuộc đoạn đã cho khi và chỉ khi:

\(-1< \dfrac{m}{4}\le-\dfrac{1}{2}\Leftrightarrow-4< m\le-2\)

Có 2 giá trị nguyên của m thỏa mãn

NV
20 tháng 9 2020

b/

\(cos4x=\frac{1}{2}+\frac{1}{2}cos6x\)

\(\Leftrightarrow2\left(2cos^22x-1\right)=1+4cos^32x-3cos2x\)

\(\Leftrightarrow4cos^32x-4cos^22x-3cos2x+3=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(4cos^22x-3\right)=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(2cos4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos4x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)

\(\Rightarrow x=\left\{0;-\frac{11\pi}{12};-\frac{5\pi}{12};\frac{\pi}{12};\frac{7\pi}{12};-\frac{7\pi}{12};-\frac{\pi}{12};\frac{5\pi}{12};\frac{11\pi}{12}\right\}\)

Bạn tự cộng lại

NV
20 tháng 9 2020

c/

\(\Leftrightarrow2cos^2x-1-\left(2m+1\right)cosx+m+1=0\)

\(\Leftrightarrow2cos^2x-\left(2m+1\right)cosx+m=0\)

\(\Leftrightarrow2cos^2x-cosx-2mcosx+m=0\)

\(\Leftrightarrow cosx\left(2cosx-1\right)-m\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(cosx-m\right)\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=m\end{matrix}\right.\)

Do \(cosx=\frac{1}{2}\) vô nghiệm trên \(\left(\frac{\pi}{2};\frac{3\pi}{2}\right)\) nên pt có nghiệm khi và chỉ khi \(cosx=m\) có nghiệm trên khoảng đã cho

\(-1< cosx< 0\Rightarrow-1< m< 0\)

NV
7 tháng 5 2023

Đặt \(\dfrac{\pi}{3}+mx=t\Rightarrow mx=t-\dfrac{\pi}{3}\)

\(\Rightarrow\dfrac{\pi}{6}-mx=\dfrac{\pi}{6}-\left(t-\dfrac{\pi}{3}\right)=\dfrac{\pi}{2}-t\)

Pt trở thành:

\(cos^2t+4cos\left(\dfrac{\pi}{2}-t\right)=4\)

\(\Leftrightarrow1-sin^2t+4sint=4\)

\(\Leftrightarrow sin^2t-4sint+3=0\Rightarrow\left[{}\begin{matrix}sint=1\\sint=3>1\end{matrix}\right.\)

\(\Rightarrow t=\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow\dfrac{\pi}{3}+mx=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow mx=\dfrac{\pi}{6}+k2\pi\)

\(\Rightarrow x=\dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)\)

\(0< x< 1\Rightarrow0< \dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)< 1\Rightarrow-\dfrac{1}{12}< k< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\) (1)

Pt có 4 nghiệm pb trên đoạn đã cho khi có 4 giá trị k nguyên thỏa mãn (1)

\(\Rightarrow k=\left\{0;1;2;3\right\}\)

\(\Rightarrow3< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\le4\)

\(\Rightarrow\dfrac{37\pi}{6}< m\le\dfrac{49\pi}{6}\)

 

NV
7 tháng 5 2023

Nghiệm trên \(\left(0;\pi\right)\) hay (0;1) nhỉ?

Thực ra 2 cái này cũng ko khác gì nhau về mặt pp giải toán nhưng mà \(\left(0;\pi\right)\) thì tính toán đẹp hơn \(\left(0;1\right)\) nhiều