Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\left(\dfrac{-1}{x-1}+\dfrac{2}{x+1}+\dfrac{5-x}{x^2-1}\right):\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\left(\dfrac{-1}{x-1}+\dfrac{2}{x+1}+\dfrac{5-x}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\left(\dfrac{-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{5-x}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\dfrac{-\left(x+1\right)+2\left(x-1\right)+\left(5-x\right)}{\left(x-1\right)\left(x+1\right)}:\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\dfrac{-x-1+2x-2+5-x}{\left(x-1\right)\left(x+1\right)}:\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\dfrac{2}{\left(x-1\right)\left(x+1\right)}:\dfrac{1-2x}{x^2-1}\)
\(\Leftrightarrow M=\dfrac{2}{\left(x-1\right)\left(x+1\right)}.\dfrac{x^2-1}{1-2x}\)
\(\Leftrightarrow M=\dfrac{2\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)\left(1-2x\right)}\)
\(\Leftrightarrow M=\dfrac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(1-2x\right)}\)
\(\Leftrightarrow M=\dfrac{2}{1-2x}\)
b) \(M=\dfrac{2}{1-2x}=\dfrac{-2}{3}\)
\(\Rightarrow2.3=\left(1-2x\right).\left(-2\right)\)
\(\Rightarrow6=-2+4x\)
\(\Rightarrow4x=6-\left(-2\right)\)
\(\Rightarrow4x=6+2\)
\(\Rightarrow4x=8\)
\(\Rightarrow x=8:4\)
\(\Rightarrow x=2\)
Vậy \(M=\dfrac{-2}{3}\) thì \(x=2\)
c) Để \(M=\dfrac{2}{1-2x}\in Z\) \(\Leftrightarrow2⋮1-2x\)
\(\Rightarrow1-2x\in U\left(2\right)=\left\{-1;1;-2;2\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}1-2x=-1\Rightarrow x=1\\1-2x=1\Rightarrow x=0\\1-2x=-2\Rightarrow x=1,5\\1-2x=2\Rightarrow x=-0,5\end{matrix}\right.\)
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{1;0\right\}\)
Vậy \(x=1\) hoặc \(x=0\) thì \(M\in Z\)
a) M = \(\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
= \(\left(\dfrac{1}{1-x}+\dfrac{2}{1+x}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right).\dfrac{x^2-1}{1-2x}\)
= \(\left(\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2\left(1-x\right)}{\left(1-x\right)\left(1+x\right)}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
= \(\dfrac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)\(=\dfrac{-2}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
= \(\dfrac{2}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
=\(\dfrac{2}{1-2x}\)
b) M = \(\dfrac{-2}{3}\Leftrightarrow\dfrac{2}{1-2x}=\dfrac{-2}{3}\)
=> 2 . 3 = -2 (1 - 2x) (tích chéo)
=> 6 = -2 + 4x
=> 6 + 2 - 4x = 0
=> 8 - 4x = 0
=> 4x = 8
=> x = 2 (thỏa mãn đkxđ)
Vậy để M = \(\dfrac{-2}{3}\) thì x = 2
a: ĐKXĐ: x<>0; x<>-1
b: \(Q=\dfrac{\left(x+1\right)^2}{x^2}:\left[\dfrac{x^2+1}{x^2}+\dfrac{2}{x+1}\cdot\dfrac{x+1}{x}\right]\)
\(=\dfrac{\left(x+1\right)^2}{x^2}:\dfrac{x^2+1+2x}{x^2}\)
=1
a: \(Q=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b: |x|=1/3 thì x=1/3 hoặc x=-1/3
Khi x=1/3 thì \(Q=\left(\dfrac{1}{3}\right)^2:\left(\dfrac{1}{3}-1\right)=-\dfrac{1}{6}\)
Khi x=-1/3 thì \(Q=\left(-\dfrac{1}{3}\right)^2:\left(-\dfrac{1}{3}-1\right)=-\dfrac{1}{12}\)
c: Để Q là số nguyên thì \(x^2-1+1⋮x-1\)
=>\(x-1\in\left\{1;-1\right\}\)
=>x=2
d: Để Q=4 thì x^2=4x-4
=>x=2
1, Ta có : \(\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\Leftrightarrow\left(x+2\right)\left(x-1\right)=\left(x+1\right)\left(x-m\right)\)
\(\Leftrightarrow x^2-x+2x-2=x^2-xm+x-m\)
\(\Leftrightarrow x^2-x^2+x-x-2+xm+m=0\)
\(\Leftrightarrow x\left(m+1\right)-2=0\)
Nếu \(m+1\ne0\Rightarrow\)PT có nghiệm duy nhất là : x = \(\dfrac{2}{m+1}\)
Vậy nếu m # -1 thì Pt có nghiệm duy nhất
3 ,
\(\dfrac{x+m}{x+1}+\dfrac{x-2}{x}=2\)
\(\Leftrightarrow\dfrac{x^2+mx}{x\left(x+1\right)}+\dfrac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=2\)
\(\Leftrightarrow\dfrac{x^2+mx+x^2+x-2x-2}{x\left(x+1\right)}=2\)
Mik chỉ làm đến đây được thôi
P/S : Đăng từng bài 1 thôi :))
Câu 1: \(\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\)
ĐKXĐ: \(x\ne m;x\ne1\)
\(\text{Ta có : }\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\\ \Rightarrow\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-m\right)\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x-m\right)}{\left(x-1\right)\left(\left(x-m\right)\right)}\\ \Rightarrow x^2+2x-x-2=x^2-mx+x-m\\ \Leftrightarrow x^2+x-2-x^2+mx-x+m=0\\ \Leftrightarrow m\left(x+1\right)=2\)
+) Với \(m\ne0\Leftrightarrow x+1=\dfrac{2}{m}\)
\(\Leftrightarrow x=\dfrac{2-m}{m}\)
\(\text{Khi đó : }\left\{{}\begin{matrix}\dfrac{2-m}{m}\ne1\\\dfrac{2-m}{m}\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2-m}{m}-1\ne0\\\dfrac{2-m}{m}-m\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{2-m-m}{m}\ne0\\\dfrac{2-m-m^2}{m}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2-2m\ne0\\2-2m+m-m^2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2\left(1-m\right)\ne0\\2\left(1-m\right)+m\left(1-m\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-m\ne0\\\left(2+m\right)\left(1-m\right)\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}1-m\ne0\\2+m\ne0\\1-m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)
Với \(m=0\Leftrightarrow0x=2\left(\text{Vô nghiệm}\right)\)
\(\Leftrightarrow S=\varnothing\)
Vậy để phương trình có 1 nghiệm duy nhất thì \(m\ne0;m\ne1;m\ne-2\)
cảm ơn nha