Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì đths y=ax+by=ax+b song song với đường thẳng y=−2xy=−2x nên a=−2a=−2
Đths cần tìm cắt trục hoành tại điểm AA có hoành độ 22. Mà AA nằm trên trục hoành nên tung độ của AA bằng 00. Vậy đths đi qua điểm A(2,0)A(2,0)
Do đó: 0=a.2+b⇔0=(−2).2+b⇒b=40=a.2+b⇔0=(−2).2+b⇒b=4
Vậy (a,b)=(−2,4)
Vì (d'')//(d) nên a=2
=>y=2x+b
Thay x=5 và y=0 vào (d''), ta được:
b+10=0
=>b=-10
a)
\(x=0\Rightarrow y=5\)
\(\Rightarrow A\left(0;5\right)\)
\(x=-1\Rightarrow y=3\)
\(\Rightarrow B\left(0;3\right)\)
b) Ta có (d') // (d)
\(\Rightarrow\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a'=2\\b\ne5\end{matrix}\right.\)
\(\Rightarrow\left(d'\right):y=2x+b\)
(d') cắt trục hoành tại điểm có hoành độ (3;0), suy ra
\(0=2.3+b\)
\(\Leftrightarrow b=6\)
vậy a = 2; b = 6
Gọi (d): y = ax + b
Do đồ thị hàm số song song với đường thẳng y = 2x nên a = 2
⇒ (d): y = 2x + b
Do (d) cắt trục hoành tại điểm có hoành độ là -3 nên thay x = -3; y = 0 vào (d) ta được:
2.(-3) + b = 0
⇔ -6 + b = 0
⇔ b = 0 + 6
⇔ b = 6
Vậy (d): y = 2x + 6
Hàm số y = ax + b được yêu cầu là một đường thẳng song song với đường thẳng y = 2x và cắt trục hoành tại điểm có hoành độ -3. Để tìm hệ số a và b của hàm số, chúng ta có thể sử dụng hai điều kiện sau:
1. Đường thẳng y = ax + b song song với đường thẳng y = 2x, điều này có nghĩa là hệ số góc của đường thẳng y = ax + b phải bằng hệ số góc của đường thẳng y = 2x. Vậy a = 2.
2. Hàm số y = ax + b cắt trục hoành tại điểm có hoành độ -3, điều này có nghĩa là khi x = -3, y = 0 (vì nó cắt trục hoành). Chúng ta có thể sử dụng điều này để tìm giá trị của b.
Khi x = -3, ta có:
0 = 2(-3) + b
0 = -6 + b
Bây giờ hãy giải phương trình trên để tìm giá trị của b:
b = 6
Vậy hàm số y = 2x + 6 là hàm số song song với đường thẳng y = 2x và cắt trục hoành tại điểm có hoành độ -3.
Bạn vào đây tham khảo
Câu hỏi của Mun's Hải's - Toán lớp 9 | Học trực tuyến
~ Vô thông kê của mik để vô link ~
Không vào được bạn oiiiii