Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)
=>a+12=0
hay a=-12
b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)
=>-4a+28=0
=>a=7
c: \(\Leftrightarrow2x^3-2x-x^2+1+\left(a+2\right)x+b-1⋮x^2-1\)
=>a+2=0 và b-1=0
=>a=-2 và b=1
Thực hiện phép chia đa thức A = x4 + x3 + ax2 + (a + b)x + 2b + 1 cho đa thức B = x3 + ax + b ta được kết quả b + 1
Để đa thức A chia hết cho đa thức B thì b + 1 = 0
=> b = -1
=> x4 + x3 + ax2 + (a + b)x + 2b + 1 = 0
=> x4 + x3 + ax2 - ax - 2 + 1 = 0
=> x4 + x3 + ax2 - ax - 1 = 0
=> x3 ( x + 1 ) - ax ( x + 1 ) - 1 = 0
=> ( x3 - ax ) ( x + 1 ) - 1 = 0
=> ( x3 - ax ) ( x + 1 ) = 1
=> TH1: \(\left\{{}\begin{matrix}x^3-ax=-1\\x+1=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-ax=-1\\x=-2\end{matrix}\right.\)
\(\Rightarrow2a=-9\Rightarrow a=-4,5\)
=> TH2: \(\left\{{}\begin{matrix}x^3-ax=1\\x+1=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-ax=1\\x=0\end{matrix}\right.\)
\(\Rightarrow a\in\varnothing\)
Vậy a = -4,5 và b = -1
Đặt f(x) = x^4 + ax^3 + bx +b
xét f(-1)=0 và f(1) =0(vì f(x) chia hết cho a khi f(a) =0)
f(-1) = 1 - a -b + b = 1-a =0
+
f(1) = 1+a+b+b = 1+a+2b = 0
-------------------------------------------
=> 2+2b = 0
=> b= -1
=> 1+a-2 = 0
=> a=1