Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=ax2 + bx+ c
f(0)=1, f(1)=2, f(2)=2
=>c=1;a+b+c=2;4a+2b+c=2
=>a+b=1;4a+2b=1
=>a+b=4a+2b
=>4a+2b-a-b=0
=>3a-b=0
Theo de ta co:
f(0) = a.02+b.0+c = c =1
f(1)=a.12+b.1+c = a+b+1 = 2 => a+b = 1
f(2)=a.22+b.2+c = 4a+2b+1=2(2a+b)+1 = 4 => 2(2a+b) = 3 => 2a+b = 3/2 => b = 3/2 - 2a
Thay b=3/2 - 2a vao bieu thuc: a+b=1 ta duoc:
a+3/2-2a = 1
3/2-a= 1
=> a = 3/2 - 1 = 1/2
Suy ra: b = 3/2 - 2.1/2 = 1/2
Vay: a = 1/2 ; b=1/2 ; c=1
Ta có F(0)=c=0
=>c=0
Ta lại có F(1)=a×1^2+b×1+c=2
F(1)=a+b+0=2
F(1)=a+b=2
Ta lại có F(2)=a×2^2+2b+c=2
F(2)=4a+2b+0=2
F(2)=4a+2b=2
F(2)=2a+b=1
F(2)=2a+b-2=1-2=-1
F(2)=2a+b-a-b=-1 (Do a+b=1)
F(2)=a=-1
Thay a=-1 vào a+b=1
Ta có -1+b=1
=>b=2
Vậy a=-1,b=2
\(f\left(0\right)=5=>c=5;f\left(2\right)=4.a+2.b+5=0;f\left(5\right)=25a+5b+5=0\Leftrightarrow5a+b+1=0\)
\(\hept{\begin{cases}4a+2b+5=0\\5a+b+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4a+2b+5=0\\10a+2b+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4a+2b+5=0\\6a-3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=-\frac{7}{2}\\a=\frac{1}{2}\end{cases}}\)
\(f\left(x\right)=\frac{1}{2}x^2-\frac{7}{2}x+5\)
b)
\(f\left(-1\right)=\frac{1}{2}+\frac{7}{2}+5=9=>P\left(-1;3\right)kothuocHS\)
\(f\left(\frac{1}{2}\right)=\frac{1}{2}.\frac{1}{4}-\frac{7}{2}.\frac{1}{2}+5=\frac{\left(1-14+5.8\right)}{8}=\frac{27}{8}=>Qkothuoc\)
c)
\(\frac{1}{2}x^2-\frac{7}{2}x+5=-3\Rightarrow\frac{1}{2}x^2-\frac{7}{2}x+8=0\)
\(x^2-7x+16=0\Leftrightarrow\left(x^2-2.\frac{7}{2}x+\frac{49}{4}\right)+\frac{15}{4}\)vo nghiem
+f(0) = a.0+b.0 +c =5 => c =5
+f(1)= a.1 +b.1+ 5 = 0 => a+b =-5 (1)
+ f(5) =a.52 +b.5 +5 =0 => 5a +b =-1 (2)
(10(2) => 4a +(a+b) =-1 => 4a -5 =-1 => 4a =4 => a =1
=> b =-5-a = -5 -1 = -6
Vậy a =1; b =-6 ; c =5
xét f(x) =ax^2+bx+c
ta co f(1)=a+b+c=4, f(-1)=a-b+c=8
=> 2(a+c)=12
=> a+c=6 kết hợp a-c=-4 => a=1, c=5, kết hợp a+b+c=4 => b=-2
Vậy a=1, b=-2, c=5 là giá trị cần tìm.
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0+b\cdot0+c=-2\\4a-2b+c=0\\a+b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-2\\4a-2b=2\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-2\\a=1\\b=1\end{matrix}\right.\)