K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2023

Tọa độ giao điểm của (d2) và (d3) là nghiệm của hệ phương trình sau:

\(\left\{{}\begin{matrix}x+1=-x+3\\y=x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=2\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Thay x=1 và y=2 vào (d1), ta được:

\(\left(m^2-1\right)+m^2-5=2\)

=>\(2m^2=8\)

=>\(m^2=4\)

=>\(\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\)

31 tháng 10 2022

b: Để hai đường song song thì m^2-1=1 và -m^2+3=5

=>m^2=2 và -m^2=2

=>\(m=\pm\sqrt{2}\)

c: Vì (d2) vuông góc với (d3)

và (d1)//(d2)

nên (d1) vuông góc với (d3)

NV
4 tháng 6 2020

Gọi A là giao điểm d1 và d2

Pt hoành độ giao điểm d1 và d2: \(x+3=-x+1\Rightarrow x=-1\)

\(\Rightarrow A\left(-1;2\right)\)

Để 3 đường thẳng đồng quy \(\Leftrightarrow\) d3 qua A

\(\Leftrightarrow2=\sqrt{2}.\left(-1\right)+\sqrt{2}+m\)

\(\Rightarrow m=2\)

1) Ta có: \(\left\{{}\begin{matrix}2\cdot\dfrac{x}{x+2}-\dfrac{y}{y-1}=4\\\dfrac{x}{x+2}-3\cdot\dfrac{y}{y-1}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot\dfrac{x}{x+2}-\dfrac{y}{y-1}=4\\2\cdot\dfrac{x}{x+2}-6\cdot\dfrac{y}{y-1}=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-7\cdot\dfrac{y}{y-1}=10\\2\cdot\dfrac{x}{x+2}-\dfrac{y}{y-1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y}{y-1}=\dfrac{-10}{7}\\2\cdot\dfrac{x}{x+2}+\dfrac{10}{7}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\cdot\dfrac{x}{x+2}=\dfrac{18}{7}\\\dfrac{y}{y-1}=\dfrac{-10}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+2}=\dfrac{9}{7}\\\dfrac{y}{y-1}=\dfrac{-10}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9\left(x+2\right)=7x\\-10\left(y-1\right)=7y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9x+18-7x=0\\-10y+10-7y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+18=0\\-17y+10=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=-18\\-17y=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-9\\y=\dfrac{10}{17}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(-9;\dfrac{10}{17}\right)\)

Tọa độ giao điểm của (d1) và (d2) là:

\(\left\{{}\begin{matrix}2x+3=x+5\\y=x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=7\end{matrix}\right.\)

Thay x=2 và y=7 vào (d3), ta được:

4k-5=7

hay k=3

27 tháng 2 2020

xét phương trình hoành độ giao điểm giữa (d2) và (d3) ta có:

\(-2x=9-5x\)\(\Leftrightarrow x=3\)

thay vào (d2) ta có: y=-6

=>điểm (3;-6) là giao điểm của (d2) và (d3)

để 3 đường thẳng đồng quy thì:

(3;-6) thuộc (d3)

=> -6=(m+1)3-2m-5

<=> -6=m-2

<=>m=-4

vậy m=-4 thì 3 đường thẳng đồng quy

27 tháng 2 2020

\(y=\left(m+1\right)x-2m-5\left(d_1\right)\)

\(y=-2x\left(d_2\right)\)

\(y=9-5x\left(d_3\right)\)

Hoành độ giao điểm của \(\left(d_2\right),\left(d_3\right)\)là nghiệm của phương trình.

\(-2x=9-5x\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\)

Thay \(x=3\)vào \(\left(d_2\right)\)ta được: \(y=-6\)

\(\Rightarrow A\left(3;-6\right)\)là giao điểm của \(\left(d_2\right),\left(d_3\right)\)

Để \(\left(d_1\right),\left(d_2\right),\left(d_3\right)\)đồng quy thì:

\(\Leftrightarrow\left(d_1\right)\)di qua \(A\left(3;-6\right)\)

\(\Leftrightarrow-6=\left(m+1\right).3-2m-5\)

\(\Leftrightarrow3m+3-2m-5+6=0\)

\(\Leftrightarrow m+4=0\)

\(\Leftrightarrow m=-4\)

Vậy ............

20 tháng 11 2023

a: loading...

b: Tọa độ giao điểm của (d1) và (d2) là:

\(\left\{{}\begin{matrix}3x-2=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-x=2+1\\y=x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=3\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{3}{2}+1=\dfrac{5}{2}\end{matrix}\right.\)

Thay x=3/2 và y=5/2 vào (d3), ta được:

\(2m+3\cdot\dfrac{3}{2}-1=\dfrac{5}{2}\)

=>\(2m+\dfrac{7}{2}=\dfrac{5}{2}\)

=>\(2m=-1\)

=>m=-1/2

c: (d3): y=2m+3x-1

=>y=m*2+3x-1

Tọa độ điểm mà (d3) luôn đi qua là:

\(\left\{{}\begin{matrix}2=0\left(vôlý\right)\\y=3x-1\end{matrix}\right.\)

=>(d3) không đi qua cố định bất cứ điểm nào