Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xác định bài toán (0,5đ)
Input: Nhập N và dãy a 1 , a 2 , . . . , a n
Output: Đưa ra kết quả tổng S
- Thuật toán (1,75đ):
Bước 1: Nhập N và a 1 , a 2 , . . . , a n
Bước 2: S ← 0; i ← 1
Bước 3: Nếu i >Nthì đưa ra S rồi kết thúc
Bước 4: Nếu ai⟨0 thì S ←S+ a i 2
Bước 5: i ← i + 1 và quay lại Bước 3
def count_pairs_divisible_by_3(arr):
n = len(arr)
# Đếm số lượng số dư khi chia cho 3
count_mod = [0, 0, 0]
for num in arr:
count_mod[num % 3] += 1
# Trường hợp 0: Số dư 0 + Số dư 0
count_pairs = count_mod[0] * (count_mod[0] - 1) // 2
# Trường hợp 1: Số dư 1 + Số dư 2
count_pairs += count_mod[1] * count_mod[2]
# Trường hợp 2: Số dư 1 + Số dư 1 hoặc Số dư 2 + Số dư 2
count_pairs += count_mod[1] * (count_mod[1] - 1) // 2
count_pairs += count_mod[2] * (count_mod[2] - 1) // 2
return count_pairs
# Thử nghiệm
arr = [3, 5, 7, 9, 11, 13, 15]
result = count_pairs_divisible_by_3(arr)
print(f"Số lượng cặp số có tổng chia hết cho 3 là: {result}"
*Xác định bài toán
-input: số n
-output: tính tổng \(S=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\)
*Mô tả thuật toán
-Bước 1: nhập n
-Bước 2: s:=0; i:=1;
-Bước 3: s:=s+1/i;
-Bước 4: inc(i);
-Bước 5: nếu i<=n thì quay lại bước 3
-Bước 6: Xuất s
-Bước 7: Kết thúc
Đáp án B