\(\sqrt{x-2013}+\sqrt{4028-2x}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
2 tháng 11 2020

ĐKXD : \(\hept{\begin{cases}x-2013\ge0\\4028-2x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2013\\2x\le4028\end{cases}}}\Leftrightarrow\hept{\begin{cases}x\ge2013\\x\le2014\end{cases}}\)

vậy \(2013\le x\le2014\)

16 tháng 6 2019

giúp mình vs! Mình đang cần gấp

a)biểu thức có nghĩa khi :

-x4 -2 > 0 <=> - x4 > 2 

20 tháng 8 2017

Cho biểu thức trong dấu căn lớn hơn hoặc bằng 0 để tìm đk của x.

4 tháng 6 2019

a) \(\sqrt{-7x}\)

\(ĐKXĐ:x\le0\)

b) \(-\sqrt{\frac{x-2}{-5}}\)

\(ĐKXĐ:x\le2\)

c) \(\sqrt{\frac{3}{8-x}}\)

\(ĐKXĐ:x\le8\)

20 tháng 8 2017

a) \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\orbr{\begin{cases}x\ge3\\x\ge-3\end{cases}}\)

b) \(-x-2\ge0\Leftrightarrow-x\ge2\Leftrightarrow x\ge-2\)

c) \(x^2+2x+1=\left(x+1\right)^2\)

\(\Rightarrow\left(x+1\right)^2\ge0\Leftrightarrow x+1\ge0\Leftrightarrow x\ge-1\)

9 tháng 8 2020

Mình nghĩ đề câu a) là \(\frac{1}{1-\sqrt{x^2-3}}\) khi đó 

\(1-\sqrt{x^2-3}\ne0\Rightarrow\sqrt{x^2-3}\ne1\Rightarrow x\ne\pm2\)và \(x^2-3\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)

b)

\(\sqrt{16-x^2}\ge0;\sqrt{2x+1}\ge0;\sqrt{x^2-8x+14}\ge0\)và \(\sqrt{2x+1}\ne0\)

\(\Leftrightarrow-4\le x\le4;x\ge-\frac{1}{2};4-\sqrt{2}\le x\le4+\sqrt{2};x\ne\frac{1}{2}\)

Như vậy \(-\frac{1}{2}< x\le4+\sqrt{2}\)

7 tháng 4 2020

\(ttt\)f

10 tháng 4 2020
x lớn hơn hoặc bằng2
5 tháng 6 2019

a) \(\text{ĐKXĐ:}3x+1\ge0\Leftrightarrow x\ge-\frac{1}{3}\)

b) \(\text{ĐKXĐ:}\left(x+2\right)\left(2x-3\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\le-2\\x\ge\frac{3}{2}\end{cases}}\)

Đúng không ta?:3

16 tháng 12 2016

\(\frac{x-2}{x^2-2x+1}\ge0\)

\(\frac{x-2}{\left(x-2\right)^2}\ge0\)

\(\hept{\begin{cases}x-2\ge0\\x-2\ne0\end{cases}}\)

\(\Rightarrow x>2\)

hoc lop may roi đại lộc .

16 tháng 12 2016

Ta nhận xét thấy mẫu luôn lớn hơn hoặc bằng 0 nên ta có

ĐKXĐ là

\(\hept{\begin{cases}x-2\ge0\\x^2-2x+1\ne0\end{cases}}\Leftrightarrow x\ge2\)

28 tháng 9 2015

a/ Điều kiện để a có nghĩa \(2x+7\ge0\Leftrightarrow x\ge-\frac{7}{2}\)

b/ Điều kiện để b có nghĩa \(-3x+4\ge0\Leftrightarrow3x\le4\Leftrightarrow x\le\frac{4}{3}\)

c/ Điều kiện để c có nghĩa là \(-1+x>0\Leftrightarrow x>1\)

d/ Do \(1+x^2\ge1\) với mọi x nên d luôn có nghĩa