K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

\(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)

=>a+12=0

hay a=-12

Câu 2; 

Để A là số nguyên thì \(\left(x+2\right)⋮x^2+4\)

\(\Leftrightarrow x^2-4⋮x^2+4\)

\(\Leftrightarrow x^2+4-8⋮x^2+4\)

\(\Leftrightarrow x^2+4\in\left\{4;8\right\}\)

hay \(x\in\left\{0;2;-2\right\}\)

14 tháng 1 2017

Ta có:

\(x^4+4=\left(x^4+4x^2+4\right)-4x^2\)

=\(\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

=> \(x^4+4\) chia hết cho \(x^2+2x+a\) khi \(\left(x^2+2x+2\right)\left(x^2-2x+2\right)⋮\left(x^2+2x+a\right)\)

=> a = 2.

30 tháng 10 2016

vậy rút gọn thành vầy:

Tìm số tự nhiên x biết  4x + 3 chia hết cho x - 2

a. Ta có: x + 3 chia hết cho x - 1 
=> x - 1 cũng chia hết cho x-1 
=> ( x + 3) - ( x - 1) chia hết cho x -1 
=> x + 3 -x +1 = 4 chia hết cho x - 1 (đây là fuơng fáp khử x) 
=> x - 1 thuộc Ư(4) = {1;2;4} (nếu đề bảo tìm số tự nhiên, còn nếu số nguyên thì thêm -1,-2,-4 nữa) 
+ Lập bảng: 
X -1 -4 -2 -1 1 2 4 
x -3 -1 0 2 3 5 
b. Tương tự bài a, chỉ cần biến đổi khác ở bước đầu, các bước sau đều giống: 
4x + 3 chia hết 2x - 1 
=> 2x - 1 chja hết 2x -1 => 2( 2x - 1) chia hết 2x -1 (nhân thêm để có 4x để bước sau bỏ x) 
=> 2(2x - 1) = 4x - 2 chia hết 2x -1 và 4x - 3 chia hết 2x-1 
=> ( 4x - 3) - ( 4x - 2) chia hết 2x -1 
=> 4x -3 -4x + 2 = 1 chia hết 2x -1 
Tương tự các bước sau 

30 tháng 10 2016

vậy a=?

17 tháng 8 2017

tách f(x) rồi còn thừa thiếu bao nhiêu dùng hệ số bất định là ra ngay ấy mà

30 tháng 10 2016

Ta có x^4 + 4 = (x^2 + 2x + a)(x^2 - 2x + 4 - a) + 4ax - 8x + a^2 - 4a + 4; để chia hết thì phần dư phải bằng 0 hay

\(\hept{\begin{cases}4a-8=0\\a^2-4a+4=0\end{cases}}\)

=> a = 2

2 tháng 11 2016

thanks a 

16 tháng 10 2017

Giả sử \(x^4+1=\left(x^2+ax+b\right)\left(x^2+px+q\right)\) 

\(=x^4+px^3+qx^2+ax^3+apx^2+aqx+bx^2+bpx+bq\)

\(=x^4+\left(p+a\right)x^3+\left(q+ap+b\right)x^2+\left(aq+bp\right)x+bq\)

Đồng nhất hệ số ta được : \(a+p=0;q+ap+b=0;aq+bp=0;bq=1\)

Xét \(b=1;q=1\)\(\Rightarrow a=-1;p=1\)

\(\Rightarrow x^4+1=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Rightarrow p=\pm1;q=1\)