\(\frac{\left(3x+1\right)}{\left(x+1\right)^3}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016
3x + 1 = 3(x+1) -2 Vậy a = -2 ; b = 3
21 tháng 6 2018

\(\frac{3x+1}{\left(x+1\right)^3}=\frac{a}{\left(x+1\right)^3}+\frac{b}{\left(x+1\right)^2}\Leftrightarrow\frac{3x+1}{\left(x+1\right)^3}=\frac{a}{\left(x+1\right)^3}+\frac{b.\left(x+1\right)}{\left(x+1\right)^3}\)

\(\Rightarrow\frac{3x+1}{\left(x+1\right)^3}-\frac{a+b.\left(x+1\right)}{\left(x+1\right)^3}=0\)\(\Rightarrow3x+1=a+b.\left(x+1\right)\)

Mà 3x+1=3.(x+1) -2  \(\Rightarrow b=3,a=-2\)

12 tháng 3 2017

Ta có: 

\(\frac{3x+1}{\left(x+1\right)^3}=\frac{a}{\left(x+1\right)^3}+\frac{b}{\left(x+1\right)^2}=\frac{bx+b+a}{\left(x+1\right)^3}\)

Đồng nhất thức 2 vế được: \(\hept{\begin{cases}b=3\\a+b=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=-2\\b=3\end{cases}}\)

2 tháng 12 2016

Ta có:\(\frac{a}{\left(x+1\right)^3}+\frac{b}{\left(x+1\right)^2}=\frac{a+bx+b}{\left(x+1\right)^3}\)

           Vì \(\frac{a+bx+b}{\left(x+1\right)^3}\) và  \(\frac{3x+1}{\left(x+1\right)^3}\) đều có chung tử

Suy ra a+bx+b=3x+1

Bài 1:

a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)

\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)

\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)

Suy ra: \(12x-45-12x^2+45x=0\)

\(\Leftrightarrow-12x^2+57x-45=0\)

\(\Leftrightarrow-12x^2+12x+45x-45=0\)

\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)

\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)

\(-3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)

b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)

\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)

\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)

Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)

\(\Leftrightarrow-x^2+16x-39=0\)

\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)

\(\Leftrightarrow x^2-13x-3x+39=0\)

\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)

Vậy: Tập nghiệm S={3;13}

c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)

\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)

\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)

\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)

Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)

\(\Leftrightarrow-21x^2+26x+11=0\)

\(\Leftrightarrow-21x^2-7x+33x+11=0\)

\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)

10 tháng 10 2019

a, (3x - 5)(2x - 1) - (x + 2)(6x - 1) = 0

=> 6x^2 - 3x - 10x + 5 - (6x^2 - x + 12x - 2) = 0

=> 6x^2 - 13x + 5 - 6x^2 - 11x + 2 = 0

=> -24x + 7 = 0 

=> - 24x = -7

=> x = 7/24

b, (3x - 2)(3x + 2) - (3x - 1)^2 = -5

=> 9x^2 - 4 - 9x^2 + 6x - 1 = -5

=> 6x - 5 = -5

=> 6x = 0

=> x = 0

c, x^2 = -6x - 8

=> x^2 + 6x + 8 = 0

=> x^2 + 2.x.3 + 9 - 1 = 0

=> (x + 3)^2 = 1

=> x + 3 = 1 hoặc x + 3 = -1

=> x = -2 hoặc x = -4

10 tháng 10 2019

a) \(\left(3x-5\right)\left(2x-1\right)-\left(x+2\right)\left(6x-1\right)=0\)

\(6x^2-13x+5-6x^2-11x+2=0\)

\(24x=7\)\(x=\frac{7}{24}\)

b) \(\left(3x-2\right)\left(3x+2\right)-\left(3x-1\right)^2=-5\)

\(9x^2-4-9x^2+6x-1=5\)

\(6x=10\)\(x=\frac{5}{3}\)

c) \(x^2=-6x-8\)\(x^2+6x+8=0\)\(\left(x+2\right)\left(x+4\right)=0\)

\(\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

3 tháng 3 2020

a, \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)

\(=>\frac{1-x+x+1}{x+1}+2=\frac{1}{x+1}+2\)

\(=>\frac{2}{x+1}=\frac{1}{x+1}\)

\(=>2x+2=x+1\)

\(=>2x-x=1-2=-1\)

\(=>x=-1\)

vậy nghiệm của phương trình trên là {-1}

3 tháng 3 2020

À quên ĐKXĐ của câu a là \(x\ne-1\)

Nên \(x\in\varnothing\)nhé :v