Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có T = ( a x + 4 ) ( x 2 + b x – 1 )
= a x . x 2 + a x . b x + a x . ( - 1 ) + 4 . x 2 + 4 . b x + 4 . ( - 1 ) = a x 3 + a b x 2 – a x + 4 x 2 + 4 b x – 4 = a x 3 + ( a b x 2 + 4 x 2 ) + ( 4 b x – a x ) – 4 = a x 3 + ( a b + 4 ) x 2 + ( 4 b – a ) x – 4
Theo bài ra ta có
( a x + 4 ) ( x 2 + b x – 1 ) = 9 x 3 + 58 x 2 + 15 x + c đúng với mọi x
ó a x 3 + ( a b + 4 ) x 2 + ( 4 b – a ) x – 4 = 9 x 3 + 58 x 2 + 15 x + c đúng với mọi x.
ó a = 9 a b + 4 = 58 4 b - a = 15 - 4 = c ó a = 9 9 . b = 54 4 b - a = 15 c = - 4 ó a = 9 b = 6 c = - 4
Vậy a = 9, b = 6, c = -4
Đáp án cần chọn là: B
Đặt phép chia sau đo tính số dư
Vì x4+1 chia hết cho x2+ax +b ∀ x
⇒ số dư = 0 ⇒ từng cái = 0 ⇒ a= ; b =
a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)
hay a=7
Xác định các số a,b,c sao cho 1/(x^2+z)(x-1)= (ax+b)/(x^2+1) +c/(x-1)
Giúp tớ nhanh với ạ, tớ cần gấp
Mình xin phép sửa đề 1 trust ạ :>
Xác định các số a,b,c sao cho \(\frac{1}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Điều kiện x khác 1 :vv
\(pt\Leftrightarrow\frac{1}{\left(x^2+1\right)\left(x-1\right)}=\frac{\left(ax+b\right)\left(x-1\right)}{\left(x^2+1\right)\left(x-1\right)}+\frac{c\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}\)
\(\Leftrightarrow1=ax^2-ax+bx-b+cx^2+c\)
\(\Leftrightarrow\left(a+c\right)x^2+\left(b-a\right)x+\left(c-b-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a+c=0\\b-a=0\\c-b-1=0\end{cases}\Leftrightarrow}a=-\frac{1}{2};b=-\frac{1}{2};c=\frac{1}{2}\)
Vậy .....