K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 11 2018

Lời giải:

a) Áp dụng định lý Bê-du về phép chia đa thức ta có:

Số dư khi chia đa thức \(f(x)=2x^2+ax+1\) cho $x-3$ là \(f(3)\)

Ta có:

\(f(3)=4\)

\(\Leftrightarrow 2.3^2+a.3+1=4\Rightarrow a=-5\)

b) Ta thêm bớt để đa thức $x^4+ax^2+b$ xuất hiện $x^2-x+1$

\(x^4+ax^2+b=(x^4+x)+ax^2-x+b\)

\(=x(x^3+1)+a(x^2-x+1)+ax-x-a+b\)

\(=x(x+1)(x^2-x+1)+a(x^2-x+1)+x(a-1)+(b-a)\)

\(=(x^2-x+1)(x^2+x+a)+x(a-1)+(b-a)\)

Từ trên suy ra đa thức $x^4+ax^2+b$ khi chia cho đa thức $x^2-x+1$ thì dư \(x(a-1)+(b-a)\)

Để phép chia là chia hết thì :

\(x(a-1)+(b-a)=0, \forall x\Leftrightarrow \left\{\begin{matrix} a-1=0\\ b-a=0\end{matrix}\right.\Rightarrow a=b=1\)

5 tháng 11 2020

cau a dap an la 3 ban oi

 

a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)

hay a=7

31 tháng 12 2022

1: \(\dfrac{f\left(x\right)}{x-3}=\dfrac{2x^2-6x+\left(a+6\right)x-3a-18+3a+19}{x-3}\)

=2x^2+(a+6)+3a+19/x-3

Để f(x)/x-3 dư 4 thì 3a+19=4

=>3a=-15

=>a=-5

2: \(\dfrac{f\left(x\right)}{x-5}=\dfrac{3x^2-15x+\left(a+15\right)x-5a-75+5a+102}{x-5}\)

\(=3x+a+15+\dfrac{5a+102}{x-5}\)

Để dư là 27 thì 5a+102=27

=>5a=-75

=>a=-15

2 tháng 10 2021

\(a,4x^3+ax+b⋮x-2\\ \Leftrightarrow4x^3+ax+b=\left(x-2\right)\cdot a\left(x\right)\)

Thay \(x=2\Leftrightarrow32+2a+b=0\Leftrightarrow2a+b=-32\left(1\right)\)

\(4x^3+ax+b⋮x+1\\ \Leftrightarrow4x^3+ax+b=\left(x+1\right)\cdot b\left(x\right)\)

Thay \(x=-1\Leftrightarrow-4-a+b=0\Leftrightarrow a-b=-4\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\) ta có hệ \(\left\{{}\begin{matrix}2a+b=-32\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-36\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-12\\b=-8\end{matrix}\right.\)

 

25 tháng 10 2016

cái này đồng nhất hệ số đi nhá

DD
20 tháng 12 2021

\(f\left(x\right)=ax^3+bx+c\)

\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(1\right)=1+5=6\\f\left(-1\right)=-1+5=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-8a-2b+c=0\\a+b+c=6\\-a-b+c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{1}{2}\\c=5\end{cases}}\)