Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay x=3; y=1 vào hệ phương trình ta có:
\(\left\{{}\begin{matrix}2x+ay=b+4\\ax+by=8+9a\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6+a=b+4\\3a+b=8+9a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b-a=2\\b-6a=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5a=-6\\b-a=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{6}{5}\\b=\frac{4}{5}\end{matrix}\right.\)
vậy a=-6/5; b=4/5 thì hệ phương trình có nghiệm x=3;y=1
Do hệ có nghiệm x=3; y=-1 nên thay cặp nghiệm vào hệ ta được:
\(\left\{{}\begin{matrix}2.3+a.\left(-1\right)=b+4\\a.3+b.\left(-1\right)=8+9a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\6a+b=-8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=4\end{matrix}\right.\)
Thay \(x=3;y=-1\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}6-a=b+4\\3a-b=8+9a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\6a+b=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-10\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=4\end{matrix}\right.\)
a, \(\left(I\right):\left\{{}\begin{matrix}2x+ay=b\\ax-by=1\end{matrix}\right.\)
Thay (x;y)=(1;-3) vào hpt có :
\(\left\{{}\begin{matrix}2-3a=b\\a+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+b=2\\a+3b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9a+3b=6\\a+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8a=5\\a+3b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{8}\\\dfrac{5}{8}+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{8}\\b=\dfrac{1}{8}\end{matrix}\right.\)
Vậy a=5/8 , b=1/8
Câu nào biết thì mink làm, thông cảm !
Bài 1:
1) Cho \(a=1\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)
2) Cho \(a=\sqrt{3}\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)
Bữa sau làm tiếp
1)
\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)
trừ 2 vế của pt cho nhau ta tìm được
\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)
để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
- Thay x = 3, y = 1 vào hệ phương trình trên ta được :
\(\left\{{}\begin{matrix}6+a=b+4\\3a+b=8+9a\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a=b+4-6\\3a+b-9a=8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a=b-2\\b-6\left(b-2\right)=8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a=b-2\\b-6b+12=8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a=b-2\\-5b=-4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a=\frac{4}{5}-2=-\frac{6}{5}\\b=\frac{4}{5}\end{matrix}\right.\)
Vậy ( a, b ) = \(\left(-\frac{6}{5},\frac{4}{5}\right)\) để hệ phương trình có nghiệm là x = 3, y = 1 .