K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2024

Đa thức \(2x^3-x^2+ax+b\)(*) chia hết cho \(x^2-1\) nên hai đa thức này có cùng nghiệm: 

Ta có: \(x^2-1=0\Leftrightarrow x=\pm1\)

+) Do `x=1` là nghiệm nên thay \(x=1\) vào (*) thì (*) sẽ bằng 0 ta có:

\(2\cdot1^3-1^2+a\cdot1+b=0\) 

\(\Leftrightarrow2-1+a+b=0\)

\(\Leftrightarrow a+b=-1\Leftrightarrow a=-1-b\) (1) 

+) Do \(x=-1\) là nghiệm nên thay \(x=-1\) vào (*) thì (*) sẽ bằng 0 ta có:

\(2\cdot\left(-1\right)^3-\left(-1\right)^2+a\cdot\left(-1\right)+b=0\)

\(\Leftrightarrow-2-1-a+b=0\)

\(\Leftrightarrow b-a=3\) (2)

Thay (1) vào (2) ta có:

\(b-a=3\Leftrightarrow b-\left(-1-b\right)=3\)

\(\Leftrightarrow b+1+b=3\)

\(\Leftrightarrow2b=2\)

\(\Leftrightarrow b=1\) 

\(\Rightarrow a=-1-1=-2\)

Vậy: ... 

Theo đề, ta có:

4a-2b+c=0 và a-c=5

=>5a-2b=5 và a-c=5

=>c=a-5; 2b=5a-5

=>c=a-5; b=2/5a-5/2

=>f(x)=ax^2+(2/5a-5/2)x+a-5

\(\dfrac{f\left(x\right)}{x-2}=\dfrac{ax^2+\left(\dfrac{2}{5}a-\dfrac{5}{2}\right)x+a-5}{x-2}\)

\(=\dfrac{ax^2-2ax+\left(\dfrac{2}{5}a-\dfrac{5}{2}+2a\right)x-2\left(\dfrac{12}{5}a-\dfrac{5}{2}\right)+\dfrac{24}{5}a-5+a-5}{x-2}\)

\(=ax+\left(\dfrac{12}{5}a-\dfrac{5}{2}\right)+\dfrac{\dfrac{29}{5}a-10}{x-2}\)

Vì f(x) chia hết cho x-2 nên 29/5a-10=0

=>a=50/29

=>c=-95/29; b=-105/58

a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7 
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp: 
TH1: 2x-3 = -1 <=> x = 1 
TH2: 2x-3 = 1 <=> x = 2 
TH3: 2x-3 = -7 <=> x = -2 
TH4: 2x-3 = 7 <=> x = 5 
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}

a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7 
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp: 
TH1: 2x-3 = -1 <=> x = 1 
TH2: 2x-3 = 1 <=> x = 2 
TH3: 2x-3 = -7 <=> x = -2 
TH4: 2x-3 = 7 <=> x = 5 
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5} 

b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5 
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp) 
TH1: x-3 = -5 <=> x = -2 
TH2: x-3 = -1 <=> x = 2 
TH3: x-3 = 1 <=> x = 4 
TH4: x-3 = 5 <=> x = 8 
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}

7 tháng 5 2017
  1. GPT F(X)=0 TA ĐC X=1 VÀ X=-2  
  2. THAY NGHIỆM  TRÊN VÀO G(X)=0  TA ĐC 
  •  VỚI X=1 TA CÓ PT : 1+A +B +2=0 <=> A+B=-3 SUY RA B=-3-A
  • VỚI X=-2 TA CÓ  PT : -8+4A-2B+2=0 <=> 2A-B=0  THAY B= -3- A VÀO TA CÓ :2A+3+A =0 . GIẢI RA A=-1 VÀ B=-2
12 tháng 5 2016

xét f(x)=0=> (x+1)(x-1)=0

   =>__x+1=0=>x=-1

      |__x-1=0=> x=1

vậy nghiêm của f(x) là ±1

12 tháng 5 2016

xét f(x)=0 => (x+1)(x-1)=0

=> __x+1=0=> x=-1

    |__x-1=0=> x=1

vậy nghiệm của f(x) là ±1

ta có: nghiệm của f(x) cũng là nghiệm của g(x) nên ±1 cũng là nghiêm của g(x)

g(-1)=\(\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)+2=-1+a-b+2=1+a-b=0\)

g(1)=\(1^3+a.1^2+b.1+2=1+a+b+2=3+a+b=0\)

=>1+a-b=3+a+b

=>1-3-b-b=-a+a

=> -2-2b=0

=> -2b=2

=>b=2:(-2)=-1

thay b vào ta có:

\(g\left(1\right)=3+a+\left(-1\right)=0\)

=> 2+a=0

=> a=-2

Vậy a=-2 và b=-1

28 tháng 3 2023

`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`

`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`

`= x-1`

Bậc của đa thức : `1`

`b,` Ta có ` A(x)= x-1=0`

`x-1=0`

`=>x=0+1`

`=>x=1`

 

28 tháng 3 2023

a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)

\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)

\(A\left(x\right)=x-1\)

Đa thức có bật 1

b) \(x-1=0\)

\(\Rightarrow x=1\)

Vậy đa thức có nghiệm là 1