Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề, ta có:
4a-2b+c=0 và a-c=5
=>5a-2b=5 và a-c=5
=>c=a-5; 2b=5a-5
=>c=a-5; b=2/5a-5/2
=>f(x)=ax^2+(2/5a-5/2)x+a-5
\(\dfrac{f\left(x\right)}{x-2}=\dfrac{ax^2+\left(\dfrac{2}{5}a-\dfrac{5}{2}\right)x+a-5}{x-2}\)
\(=\dfrac{ax^2-2ax+\left(\dfrac{2}{5}a-\dfrac{5}{2}+2a\right)x-2\left(\dfrac{12}{5}a-\dfrac{5}{2}\right)+\dfrac{24}{5}a-5+a-5}{x-2}\)
\(=ax+\left(\dfrac{12}{5}a-\dfrac{5}{2}\right)+\dfrac{\dfrac{29}{5}a-10}{x-2}\)
Vì f(x) chia hết cho x-2 nên 29/5a-10=0
=>a=50/29
=>c=-95/29; b=-105/58
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp)
TH1: x-3 = -5 <=> x = -2
TH2: x-3 = -1 <=> x = 2
TH3: x-3 = 1 <=> x = 4
TH4: x-3 = 5 <=> x = 8
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}
xét f(x)=0=> (x+1)(x-1)=0
=>__x+1=0=>x=-1
|__x-1=0=> x=1
vậy nghiêm của f(x) là ±1
xét f(x)=0 => (x+1)(x-1)=0
=> __x+1=0=> x=-1
|__x-1=0=> x=1
vậy nghiệm của f(x) là ±1
ta có: nghiệm của f(x) cũng là nghiệm của g(x) nên ±1 cũng là nghiêm của g(x)
g(-1)=\(\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)+2=-1+a-b+2=1+a-b=0\)
g(1)=\(1^3+a.1^2+b.1+2=1+a+b+2=3+a+b=0\)
=>1+a-b=3+a+b
=>1-3-b-b=-a+a
=> -2-2b=0
=> -2b=2
=>b=2:(-2)=-1
thay b vào ta có:
\(g\left(1\right)=3+a+\left(-1\right)=0\)
=> 2+a=0
=> a=-2
Vậy a=-2 và b=-1
`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`
`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`
`= x-1`
Bậc của đa thức : `1`
`b,` Ta có ` A(x)= x-1=0`
`x-1=0`
`=>x=0+1`
`=>x=1`
a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)
\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)
\(A\left(x\right)=x-1\)
Đa thức có bật 1
b) \(x-1=0\)
\(\Rightarrow x=1\)
Vậy đa thức có nghiệm là 1
Đa thức \(2x^3-x^2+ax+b\)(*) chia hết cho \(x^2-1\) nên hai đa thức này có cùng nghiệm:
Ta có: \(x^2-1=0\Leftrightarrow x=\pm1\)
+) Do `x=1` là nghiệm nên thay \(x=1\) vào (*) thì (*) sẽ bằng 0 ta có:
\(2\cdot1^3-1^2+a\cdot1+b=0\)
\(\Leftrightarrow2-1+a+b=0\)
\(\Leftrightarrow a+b=-1\Leftrightarrow a=-1-b\) (1)
+) Do \(x=-1\) là nghiệm nên thay \(x=-1\) vào (*) thì (*) sẽ bằng 0 ta có:
\(2\cdot\left(-1\right)^3-\left(-1\right)^2+a\cdot\left(-1\right)+b=0\)
\(\Leftrightarrow-2-1-a+b=0\)
\(\Leftrightarrow b-a=3\) (2)
Thay (1) vào (2) ta có:
\(b-a=3\Leftrightarrow b-\left(-1-b\right)=3\)
\(\Leftrightarrow b+1+b=3\)
\(\Leftrightarrow2b=2\)
\(\Leftrightarrow b=1\)
\(\Rightarrow a=-1-1=-2\)
Vậy: ...