Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích đa thức x2+ x-6 = (x-2)(x+3)
Gọi thương của phép chia f(x) cho đa thức trên là Q(x)
Ta có f(2)= 8+ 2a+b=0
Suy ra 2a+b=-8
lại có f(-3)= -27+ 3a+b=0
Suy ra 3a+b=27
đến đây ta dùng máy tính giải hệ ta được a=35;b=-78
Ta có:
\(X^3+x^2-x+a=\left(x+1\right)^2\cdot\left(x-1\right)+a+1\)
Để biểu thức đã cho chia hết cho (x+1)^2 thì a+1=0=>a=-1.
Vậy a=-1 thì biểu thức đã cho chia hết cho (a+1)^2
Ta có
Để phép chia trên là phép chia hết thì R = a + 12 = 0 ó a = -12
Đáp án cần chọn là: C
\(x^3-3x+a⋮\left(x-1\right)^2\\ \Leftrightarrow x^3-3x+a=\left(x-1\right)^2\cdot A\left(x\right)\)
Thay \(x=1\), ta được:
\(1^3-3\cdot1+a=0\\ \Leftrightarrow a=2\)
Vậy \(a=2\) thì thỏa mãn đề
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
\(\Leftrightarrow x^3-2x^2-2x^2+4x+2x-4-a+4⋮x-2\)
hay a=4
Đổi \(\left(x+1\right)^2=x^2+2x+1\)
Thực hiện phép chia đa thức,ta được thương là x - 1.Số dư là a + 1
Để \(x^3+x^2+a-x⋮\left(x+1\right)^2\)
Thì \(a+1=0\Leftrightarrow a=-1\)