Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề c/m : \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
Ta có \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
=> \(\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)
Từ (1) => \(\frac{a+2b+c}{x}=\frac{4a+2b-2c}{2y}=\frac{4a-4b+c}{z}=\frac{a+2b+c+4a+2b-2c+4a-4b+c}{x+2y+z}\)
\(=\frac{9a}{x+2y+z}\)(2)
Từ (1) => \(\frac{2a+4b+2c}{2x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}=\frac{2a+4b+2c+2a+b-c-4a+4b-c}{2x+y-z}\)
\(=\frac{9b}{2x+y-z}\)(3)
Từ (1) => \(\frac{4a+8b+4c}{4x}=\frac{8a+4b-4c}{4y}=\frac{4a-4b+c}{z}\)
\(=\frac{4a+8a+4c-8a-4b+4c+4a-4b+c}{4x-4y+z}=\frac{9c}{4x-4y+z}\)(4)
Từ (2)(3)(4) => \(\frac{9a}{x+2y+z}=\frac{9b}{2x+y-z}=\frac{9c}{4x-4y+z}\)
=> \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)(đpcm)
\(\frac{x}{a-2b+c}=\frac{y}{2a-b-c}=\frac{z}{4a+4b+c}\)
\(=\frac{2y}{4a-2b-2c}=\frac{2x}{2a-4b+2c}=\frac{4x}{4a-8b+4c}=\frac{4y}{8a-4b-4c}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{a-2b+c}=\frac{2y}{4a-2b-2c}=\frac{z}{4a+4b+c}=\frac{x+2y+z}{9a}\left(1\right)\)
\(\frac{z}{4a+4b+c}=\frac{y}{2a-b-c}=\frac{2x}{2a-4b+2c}=\frac{z-y-2x}{9b}\left(2\right)\)
\(\frac{4x}{4a-8b+4c}=\frac{4y}{8a-4b-4c}=\frac{z}{4a+4b+c}=\frac{4x-4y+z}{9c}\left(3\right)\)
Từ (1),(2),(3) \(\Rightarrow\frac{x+2y+z}{9a}=\frac{z-y-2x}{9b}=\frac{4x-4y+z}{9c}\) \(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{z-y-2x}=\frac{x}{4x-4y+z}\)(ĐPCM)
Bạn lưu ý, gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.