Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+9)(x+10)(x+11) -8x =0
<=>(x2+19x+90)(x+1)-8x=0
<=>x3+30x2+299x+990-8x=0
<=>(x+15)(x2+15x+66)=0
<=>x+15=0 hoặc x2+15x+66=0 (1)
<=>x=-15. Denta(1)=152-4(1.66)=-39<0
=>(1) vô nghiệm
Vậy nghiệm duy nhất thỏa mãn là x=-15
Ta có \(x^3+30x^2+291x+990=0\)
\(\Leftrightarrow\left(x^3+15x^2\right)+\left(15x^2+225x\right)+\left(66x+990\right)=0\)
\(\Leftrightarrow\left(x+15\right)\left(x^2+15x+66\right)=0\)
mà \(x^2+15x+66=x^2+2.x.\dfrac{15}{2}+\dfrac{225}{4}+\dfrac{39}{4}=\left(x+\dfrac{15}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\)
=>x+15=0
\(\Leftrightarrow x=-15\)
a) \(2\sqrt{x^2}=2.\left|x\right|=-2x\)(vì x<0)
b) \(\frac{1}{2}\sqrt{x^{10}}=\frac{1}{2}\sqrt{\left(x^5\right)^2}\frac{1}{2}\left|x^5\right|=-\frac{1}{2}x^5\)(vì x>0)
c) \(x-4+\sqrt{x^2-8x+16}=x-4+\sqrt{\left(x-4\right)^2}=x-4+\left|x-4\right|=x-4+4-x=0\)(vì x<4 nên x-4<0)
d) \(\frac{3-\sqrt{x}}{x-9}=\frac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{-1}{\sqrt{x}+3}\)
\(8x-13y+6=0\)
\(\Leftrightarrow x=\frac{13y-6}{8}=2y-1-\frac{3y+2}{8}\in Z\)
Đặt: \(\frac{3y+2}{8}=t_1\left(t_1\in Z\right)\)
\(\Rightarrow y=\frac{8t_1-2}{3}=3t_1-1-\frac{t_1+1}{3}\)
Đặt: \(\frac{t_1+1}{3}=t\left(t\in Z\right)\)
\(\Rightarrow t_1=3t-1\)
Mà: \(-10\le x\le50\Rightarrow0\le t\le4\)
P/s: Đến đây bạn tự làm nốt nhé :)
a, \(x=\dfrac{2}{\sqrt{7}-\sqrt{5}}=\dfrac{2\left(\sqrt{7}+\sqrt{5}\right)}{2}=\sqrt{7}+\sqrt{5}\)
b, Ta có a + b + c = 1 + 10 - 11 = 0
Vậy pt có 2 nghiệm là x = 1 ; x = -11
c, \(\Leftrightarrow\left(x^2-3\right)^2=0\Leftrightarrow x^2=3\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
a) \(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{x-4}\right):\left[\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]\)
\(P=\left[\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\left[\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\dfrac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{-4x-8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{-4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{-\left(\sqrt{x}-3\right)}\)
\(P=\dfrac{-4\sqrt{x}\cdot\sqrt{x}}{-\left(\sqrt{x}-3\right)}\)
\(P=\dfrac{4x}{\sqrt{x}-3}\)
b) \(P=\dfrac{4x}{\sqrt{x}-3}\)
\(P=4\left(\sqrt{x}-3\right)+\dfrac{36}{\sqrt{x}-3}+24\)
Theo BĐT côsi ta có:
\(P\ge\sqrt{\dfrac{4\left(\sqrt{x}-3\right)\cdot36}{\sqrt{x}-3}}+24=36\)
Vậy: \(P_{min}=36\Leftrightarrow x=36\)
(x + 9)(x + 10)(x + 11) - 8x = 0
<=> x3 + 30x2 + 291x + 990 = 0
<=> (x3 + 15x2) + (15x2 + 225x) + (66x + 990) = 0
<=> (x + 15)(x2 + 15x + 66) = 0
Ta đễ thấy (x2 + 15x + 66) > 0
=> x = - 15
Vì ( x + 9 ) ≥ 0 ; ( x + 10 ) ≥ 0 ; ( x + 11 ) ≥ 0 : 8x ≥ 0
Để (x+9)(x+10)(x+11)-8x=0 <=> x + 9 = 0 hoặc x+10=0 hoặc x+11=0 hoặc 8x = 0
=> x = -9 hoặc x = -10 hoặc x = - 11 hoặc x = 0