K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

x+7+1 chia hết cho x+7

=> 1 chiết hết cho x+7

=> x+7 \(\inƯ\left(1\right)=\left\{\pm1\right\}\)

=>x\(\in\left\{-6,-8\right\}\)

(x+7+1) ⋮(x+7)

Vì (x+7) ⋮ (x+7) nên 1⋮ (x+7)

=> x+7ϵ Ư(1)={1;-1}

.x+7=1 .x+7=-1

x=1-7 x=(-1)-7

x=-6 x=-8

Vậy x ϵ{-6;-8}

20 tháng 11 2014

a) x=-2

b) x=12; x=-2

c) x=12; x=-6

Lắm phần c,d , b quá

15 chia hết cho 2x+1 thì x= 1, x=4 và x=7 (nếu cả số âm nữa thì tự tìm nhé)

10 chia hết cho 3x+1 thì x=0, x=3 (nếu cả số âm nữa thì tự tìm nhé)

(7-x)-(25+7)=25 thì x=-36

6 chi hết cho x-1 thì x=2: x=3: x=4: x=7 (nếu cả số âm nữa thì tự tìm nhé)

5 chia hết cho x+1 thì x=0; x=4  (nếu cả số âm nữa thì tự tìm nhé)

e) x=0: x=1: x=3: x=9

f) x=1

g) x=0: x=2; x=4; x=14

z) x=0: x=1: x=4: x=9

 

14 tháng 8 2017

vai cut

Bài 2:

a: \(\Leftrightarrow n-1-5⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

b: \(\Leftrightarrow3n-3+5⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

11 tháng 3 2020

a)7 chia hết cho 2x-1

=>2x-1 thuộc Ư(6)={-3;-2;-1;1;2;3}

Do 2x-1 là số lẻ nên 2x-1 thuộc {-3;-1;1}

x thuộc {-1;0;1}

b)x-6 chia hết cho x-1

Ta có : x-6=(x-1)-5

Do x-1 chia hết cho x-1 nên 5 cũng chia hết cho x-1

=>x-1 thuộc Ư(5)={-5;-1;1;5}

=.x thuộc {-4;0;2;6}

Chúc bạn học tốt

15 tháng 3 2020

a) Để \(7⋮2x-1\)\(\Rightarrow\)\(2x-1\inƯ\left(7\right)\in\left\{\pm1;\pm7\right\}\)

- Ta có bảng giá trị:

\(2x-1\)\(-1\)\(1\)\(-7\)\(7\)
\(x\)\(0\)\(1\)\(-3\)\(4\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{-3;0;1;4\right\}\)

b) Ta có: \(x-6=\left(x-1\right)-5\)

- Để \(x-6⋮x-1\)\(\Leftrightarrow\)\(\left(x-1\right)-5⋮x-1\)mà  \(x-1⋮x-1\)

\(\Rightarrow\)\(5⋮x-1\)\(\Rightarrow\)\(x-1\inƯ\left(5\right)\in\left\{\pm1;\pm5\right\}\)

- Ta có bảng giá trị:

\(x-1\)\(-1\)\(1\)\(-5\)\(5\)
\(x\)\(0\)\(2\)\(-4\)\(6\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{-4;0;2;6\right\}\)

8 tháng 6 2016

Câu 1.

Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.

  • Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
  • Số dư của phép chia này là 7 nên ta có:

\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)

Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:

\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)

  • Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.

\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)

\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)

  • Từ (1) và (2) ta có:

\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)

  • Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành  \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
  • Viết kết quả các phép chia này ta được:

\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)

28 tháng 3 2016

A-B=3x(x-y)-(y2-x2)

=3x(x-y)-(y2+xy-xy-x2)

=3x(x-y)-[y(y+x)-x(y+x)]

=3x(x-y)+(x-y)(x+y)

=(x-y)(3x+y) luôn chia hết cho 7

2 tháng 1 2019

chào as

28 tháng 4 2019

https://olm.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+ABC+c%C3%B3+ba+g%C3%B3c+nh%E1%BB%8Dn+trung+tuy%E1%BA%BFn+AM+tr%C3%AAn+n%E1%BB%A7a+m%E1%BA%B7t+ph%E1%BA%B3ng+ch%E1%BB%A9ng+%C4%91i%E1%BB%83m+C+c%C3%B3+b%E1%BB%9D+l%C3%A0+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+AB+v%E1%BA%BD+%C4%91o%E1%BA%A1n+th%E1%BA%B3ng+AE++vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AB+v%C3%A0+AE=AB+tr%C3%AAn+n%E1%BB%A7a+m%E1%BA%B7t+ph%E1%BA%B3ng+b%E1%BB%9D+ch%E1%BB%A9a+%C4%91i%E1%BB%83m+B+c%C3%B3+b%E1%BB%9D+l%C3%A0+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+AC+v%E1%BA%BD+%C4%91o%E1%BA%A1n+th%E1%BA%B3ng+AD+vunng+g%C3%B3c+v%E1%BB%9Bi+AC+v%C3%A0+AD+=Ac+a)+c/m+BD=CEb)+tr%C3%AAn+tia+%C4%91%E1%BB%91i+c%E1%BB%A7a+tia+MA+l%E1%BA%A5y+N+sao+cho+MN=MA.C/m+tam+gi%C3%A1c+ADE=tam+gi%C3%A1c+CANc)+g%E1%BB%8Di+I+l%C3%A0+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+DE+v%C3%A0+AM+c/m+(AD%5E2+IE%5E2)/DI%5E2+AE%5E2&id=412461

11 tháng 2 2020

Đặt đa thức \(f\left(x\right)=a_0x^n+a_1x^{n-1}+a_2x^{n-2}+...+a_k\)(trong đó \(n\ge2\)và \(a_k\)là hệ số tự do)

\(\Rightarrow f\left(5\right)=a_0.5^n+a_1.5^{n-1}+a_2.5^{n-2}+...+a_k\)

Dễ thấy 5 là số nguyên tố nên các lũy thừa bậc n; n - 1; n - 2;... của 5 không chia hết cho 7.

Vậy để \(f\left(5\right)⋮7\)thì tất cả các hệ số chia hết cho 7 hay \(a_0;a_1;a_2;...;a_k⋮7\)(1)

Tương tự với \(f\left(7\right)⋮5\)ta có \(a_0;a_1;a_2;...;a_k⋮5\)(2)

Vì (5,7) = 1 nên từ (1) và (2) suy ra \(a_0;a_1;a_2;...;a_k⋮35\)

Lúc đó f(x) chia hết cho 35 với mọi x 

Vậy f(12) chia hết cho 35 (đpcm)

11 tháng 8 2016

Gọi số phải tìm là a. Do a chia cho 5 thiếu 1 nên a tận cùng bằng 4 hoặc 9.

Do a chia cho 2 dư 1 nên a tận cùng bằng 9

Xét các bội của 7 có tận cùng bằng 9, ta có:

7.7=49, đúng (chia cho 2 dư 1, chia cho 3 dư 1, chia cho 5 thiếu 1)

7.17=119, chia cho 3 dư 2, loại

7.27=189, chia hết cho 3, loại

7.37=259, lớn hơn 200, loại

Vậy SCT là 49

12 tháng 8 2016

Gọi số phải tìm là a. Do a chia cho 5 thiếu 1 nên a tận cùng bằng 4 hoặc 9.

Do a chia cho 2 dư 1 nên a tận cùng bằng 9

Xét các bội của 7 có tận cùng bằng 9, ta có:

7.7=49, đúng (chia cho 2 dư 1, chia cho 3 dư 1, chia cho 5 thiếu 1)

7.17=119, chia cho 3 dư 2, loại

7.27=189, chia hết cho 3, loại

7.37=259, lớn hơn 200, loại

Vậy SPT là 49.

12 tháng 8 2016

Gọi số phải tìm là a. Do a chia cho 5 thiếu 1 nên a tận cùng bằng 4 hoặc 9.

Do a chia cho 2 dư 1 nên a tận cùng bằng 9

Xét các bội của 7 có tận cùng bằng 9, ta có:

7.7=49, đúng (chia cho 2 dư 1, chia cho 3 dư 1, chia cho 5 thiếu 1)

7.17=119, chia cho 3 dư 2, loại

7.27=189, chia hết cho 3, loại

7.37=259, lớn hơn 200, loại

Vậy x = 49