Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy-2x+5y-12=0 => xy-2x+5y=12 => x(y-2)+5y=0 hoặc y(5+x)-2x=0
......
viets pt ra:
x(y-2)+5(y-2)-2=0
(x+5)(y-2)=2=2*1=1*2=-1*-2=-2*-1
kẻ bảng rồi tính tiếp nha
\(xy-2x+5y-12=0\)
\(\Leftrightarrow xy-2x+5y-10=2\)
\(\Leftrightarrow x\left(y-2\right)+5\left(y-2\right)=2\)
\(\Leftrightarrow\left(x+5\right)\left(y-2\right)=2\)
Sau đó lập bảng là ra
xy=5x+5y
<=> xy-5x-5y=0
<=> x(y-5)-5y+25=25
<=> (x-5)(y-5)=25=-1.-25=-25.-1=1.25.25.1
+) (x-5)(y-5)=-1.-25=> x=4,y=-20
+) (x-5)(y-5)=-25.-1=> x=-20,y=4
+) (x-5)(y-5)=1.25=>x=6,y=30
+) (x-5)(y-5)=25.1=>x=30,y=6
Vậy có 4 cặp (x,y) E {(4;-20),(-20;4),(6;30),(30;6)}
Ta có : xy - 2x + 5y - 12 = 0 <=> y(x + 5) - 2(x+5) -2 = 0 <=> (y - 2)(x + 5) = 2
(bạn tự lập bảng rồi làm tiếp nha)
a/
\(xy-5x=5y\Rightarrow x\left(y-5\right)=5y\Rightarrow x=\frac{5y}{y-5}\)với \(y\ne5\)
\(x=\frac{5y-25+25}{y-5}=\frac{5\left(y-5\right)+25}{y-5}=5+\frac{25}{y-5}\)
Do x là số nguyên nên \(\frac{25}{y-5}\)phải là số nguyên hay y-5 phải là ước của 25
=> \(y-5\in\left\{-25;-5;-1;1;5;25\right\}\)\(\Rightarrow y\in\left\{-20;0;4;6;10;30\right\}\)
Thế y vào tìm x
Các câu còn lại làm tương tự
a/ xy=5x+5y
<=> xy-5x=5y <=> x(y-5)=5y => \(x=\frac{5y}{y-5}=\frac{5y-25+25}{y-5}=\frac{5\left(y-5\right)}{y-5}+\frac{25}{y-5}=5+\frac{25}{y-5}.\)
Như vậy, để x là số tự nhiên thì 25 phải chia hết cho (y-5)
=> \(\hept{\begin{cases}y-5=1\\y-5=5\\y-5=25\end{cases}=>\hept{\begin{cases}y=6;x=30\\y=10;x=10\\y=30;x=6\end{cases}}}\)
.
Các câu khác làm tương tự
** Bổ sung điều kiện $x,y$ là các số nguyên.
$x+5y+xy=6$
$(x+xy)+5y=6$
$x(1+y)+5(y+1)=11$
$(y+1)(x+5)=11$
Vì $x,y$ nguyên nên $x+5, y+1$ cũng nguyên. Ta xét các TH sau:
TH1: $x+5=1, y+1=11\Rightarrow x=-4; y=10$
TH2: $x+5=11, y+1=1\Rightarrow x=6; y=0$
TH3: $x+5=-1; y+1=-11\Rightarrow x=-6; y=-12$
TH4: $x+5=-11; y+1=-1\Rightarrow x=-16; y=-2$