Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}\) => \(\frac{y}{24}=\frac{z}{21}\)
=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=> \(\frac{x}{20}=3\) => x = 60
\(\frac{y}{24}=3\) => y = 72
\(\frac{z}{21}=3\) => z = 63
\(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{24}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x-y+z}{20-24+21}=\frac{10}{17}\)
\(\Rightarrow x=\frac{200}{17};y=\frac{240}{17};z=\frac{210}{17}\)
Ta có:\(\orbr{\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}\Rightarrow}\frac{x}{20}=\frac{y}{24}=\frac{z}{21}}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{z-x-y}{21-20-24}=\frac{69}{-23}=-3\)
\(\Rightarrow\hept{\begin{cases}x=20.\left(-3\right)=-60\\y=24.\left(-3\right)=-72\\z=21.\left(-3\right)=-63\end{cases}}\)
Ta có: \(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{42}=\frac{x+y-z}{40+48-42}=\frac{69}{46}=\frac{3}{2}\)
Vậy x = \(\frac{3}{2}.40=60\)
y = \(\frac{3}{2}.48=72\)
z = \(\frac{3}{2}.42=63\)
a, Đặt \(k=\frac{x}{2}=\frac{y}{5}\) Ta có : \(x=2k,y=5k\)
Từ \(xy=10\Rightarrow2k.5k=10\Rightarrow10k^2=10\)
\(\Rightarrow k^2=1\Rightarrow k=1;k=-1\)
Với \(k=1\) ta được : \(\frac{x}{2}=\frac{y}{5}=1\Rightarrow x=2;y=5\)
Với \(k=-1\) ta được : \(\frac{x}{2}=\frac{y}{5}=-1\Rightarrow x=-2;y=-5\)
\(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{7}\)
Có \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{40}=\frac{y}{48};\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{48}=\frac{z}{7}\)
=> \(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}\)