![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài `10`
`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`
ADTC dãy tỉ số bằng nhau ta có :
`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`
`=> x/2=2=>x=2.2=4`
`=>y/3=2=>y=2.3=6`
`b,` Ta có : `2x=5y=>x/5=y/2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/2=(x+y)/(5+2)=-42/7=-6`
`=>x/5=-6=>x=-6.5=-30`
`=>y/2=-6=>y=-6.2=-12`
Bài `11`
`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`
`=>x/3=2=>x=2.3=6`
`=>y/4=2=>y=2.4=8`
`=>z/6=2=>z=2.6=12`
Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`
`d,` Ta có :
`x/2=y/3=>x/4=y/6`
`y/2=z/3=>y/6=z/9`
`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`
ADTC dãy tỉ số bằng nhau ta có :
`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`
`=>x/4=1=>x=1.4=4`
`=>y/6=1=>y=1.6=6`
`=>z/9=1=>z=1.9=9`
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có : \(\frac{x}{y}=\frac{4}{9}\Rightarrow\frac{x}{4}=\frac{y}{9}\Rightarrow\frac{3x}{12}=\frac{2y}{18}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{12}=\frac{2y}{18}=\frac{3x-2y}{12-18}=\frac{12}{-6}=-2\)
=> \(\hept{\begin{cases}x=\left(-2\right)\cdot4=-8\\y=\left(-2\right)\cdot9=-18\end{cases}}\)
b) Ta có : \(\frac{y}{4}=\frac{x}{-3}\Rightarrow\frac{x}{-3}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-3}=\frac{y}{4}=\frac{x-y}{\left(-3\right)-4}=\frac{7}{-7}=-1\)
=> \(\hept{\begin{cases}x=\left(-1\right)\cdot\left(-3\right)=3\\y=\left(-1\right)\cdot4=-4\end{cases}}\)
c) Ta có : \(x=-2y\Rightarrow\frac{x}{-2}=\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-2}=\frac{y}{1}=\frac{x-y}{-2-1}=\frac{-3}{-3}=1\)
=> \(\hept{\begin{cases}x=1\cdot\left(-2\right)=-2\\y=1\end{cases}}\)
d) Ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}=\frac{2x+y-z}{4+5-7}=\frac{2}{2}=1\)
=> \(\hept{\begin{cases}x=1\cdot2=2\\y=1\cdot5=5\\z=1\cdot7=7\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Answer:
1.
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow2\frac{x}{30}=3\frac{y}{60}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỷ số bằng nhau
\(2\frac{x}{30}+3\frac{y}{60}+\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=3\)
\(\Rightarrow2\frac{x}{30}=3\Rightarrow x=45\)
\(\Rightarrow3\frac{y}{60}=3\Rightarrow y=60\)
\(\Rightarrow\frac{z}{28}=3\Rightarrow z=84\)
2.
Ta đặt: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
\(\Rightarrow x=2k\)
\(\Rightarrow y=3k\)
\(\Rightarrow z=4k\)
\(\Rightarrow xyz=2k.3k.4k=24.k^3=648\)
\(\Rightarrow k^3=27\Rightarrow k=3\)
\(\Rightarrow\frac{x}{2}=3\Rightarrow x=6\)
\(\Rightarrow\frac{y}{3}=3\Rightarrow y=9\)
\(\Rightarrow\frac{z}{4}=3\Rightarrow z=12\)
3.
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(4x=2z\Rightarrow\frac{x}{2}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=27\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=3\)
\(\Rightarrow\frac{x}{2}=3\Rightarrow x=6\)
\(\Rightarrow\frac{y}{3}=3\Rightarrow y=9\)
\(\Rightarrow\frac{z}{4}=3\Rightarrow z=12\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo bài ra ta có :
x/5 = y/4 = z/7 và x+2y+z=10
=>x/5 = 2y/8 = z/7
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x/5 = 2y/8 = z/7 = x+2y+z/5+8+7 = 10/20 =1/2
x= 5.1/2 x= 5/2
=> 2y=8.1/2 => y=2
z=7.1/2 z=7/2
Vậy .....
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}=\dfrac{x+2y+z}{5+2.4+7}=\dfrac{10}{20}=\dfrac{1}{2}\\ =>x=\dfrac{5}{2};y=\dfrac{4}{2}=2;z=\dfrac{7}{2}\)