K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2021

Đề bài

19 tháng 5 2021

Đề bài thật

Bài 1:

a) Đặt m(x)=2x-1=0

⇔2x=1

hay \(x=\frac{1}{2}\)

Vậy: \(x=\frac{1}{2}\) là nghiệm của đa thức m(x)=2x-1

b) Đặt \(n\left(x\right)=x^2+3x-10=0\)

\(\Leftrightarrow x^2+5x-2x-10=0\)

\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Vậy: x=2 là nghiệm của đa thức \(n\left(x\right)=x^2+3x-10\), còn x=-1 và x=3 thì không là nghiệm của đa thức \(n\left(x\right)=x^2+3x-10\)

Bài 2:

a) Đặt P(x)=0

⇔5x-4=0

hay 5x=4

\(x=\frac{4}{5}\)

Vậy: \(x=\frac{4}{5}\) là nghiệm của đa thức P(x)=5x-4

b) Đặt Q(x)=0

\(x^2-1=0\)

\(x^2=1\)

hay x∈{1;-1}

Vậy: x∈{1;-1} là nghiệm của đa thức \(Q\left(x\right)=x^2-1\)

c) Đặt H(x)=0

\(\left[{}\begin{matrix}3-2x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;\frac{3}{2}\right\}\) là nghiệm của đa thức H(x)=(3-2x)(x+1)

d) Vì \(x^2+3\ge3>0\forall x\)

nên Q(x)>0∀x

hay Q(x) không có nghiệm

\(\frac{x}{2}=\frac{y}{3}\)​Và \(\frac{y}{4}=\frac{z}{5}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{x^2-y^2}{64-144}\)

\(=\frac{-16}{-80}=\frac{1}{5}\)

Hok tot

\(\dfrac{x}{y}=\dfrac{2}{5}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}\)

\(\dfrac{y}{z}=\dfrac{5}{3}\rightarrow\dfrac{y}{5}=\dfrac{z}{3}\)

Ta có: \(\dfrac{x}{2}=\dfrac{y}{5},\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{2x}{4}=\dfrac{y}{5}=\dfrac{3z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(2x)/4=y/5=(3z)/9=(2x-y+3z)/(4-5+9)=16/8=2`

`-> x/2=y/5=z/3=2`

`-> x=2*2=4, y=2*5=10, z=2*3=6`

 

`x/5=y/3 -> x/25=y/15`

`y/5=z/4 -> y/15=z/12`

`x/25=y/15, y/15=z/12`

`-> x/25=y/15=z/12`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/25=y/15=z/12=(x-y+z)/(25-15+12)=22/22=1`

`-> x/25=y/15=z/12=1`

`-> x=25, y=15, z=12`

 

a: x/y=2/5

=>x/2=y/5

y/z=5/3

=>y/5=z/3

=>x/2=y/5=z/3

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x-y+3z}{2\cdot2-5+3\cdot3}=\dfrac{16}{8}=2\)

=>x=4; y=10; z=6

b: x/5=y/3

=>x/25=y/15

y/5=z/4

=>y/15=z/12

=>x/25=y/15=z/12

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{25}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{25-15+12}=1\)

=>x=25; y=15; z=12

22 tháng 8 2016

Ta có : \(\frac{x}{3}=\frac{y}{5}\) và \(x+y=16\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

  \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)

\(\Rightarrow\begin{cases}\frac{x}{3}=2\Rightarrow x=2.3=6\\\frac{x}{5}=2\Rightarrow x=2.5=10\end{cases}\)

Khi đó : \(x^2-y^2=6^2-10^2=36-100=-64\)

 

22 tháng 8 2016

Có: \(\frac{x}{3}=\frac{y}{5}\) và x + y = 16

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)

Có: \(\frac{x}{3}=2\Rightarrow x=6\Rightarrow x^2=6^2=36\)

Và: \(\frac{y}{5}=2\Rightarrow y=10\Rightarrow y^2=10^2=100\)

\(\Rightarrow x^2-y^2=36-100=-64\)

21 tháng 8 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

x/3 = y/5 = x+y/3+5 = 16/8 = 2

=> x = 3×2 = 6; y = 2×5 = 10

=> x2 - y2 = 62 - 102 = 36 - 100 = -64

21 tháng 8 2016

64 nha

Theo bài ra ta cs 

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1) ; (2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

ADTC dãy tỉ số bằng nhau ta cs 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\Rightarrow\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}}\)

Như vậy  ta chọn : A

9 tháng 1

a) Đặt: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\) 

Ta có: \(x^2+3y^2-2z^2=-16\)

\(\Rightarrow\left(2k\right)^2+3\cdot\left(3k\right)^2-2\cdot\left(4k\right)^2=-16\)

\(\Rightarrow4k^2+3\cdot9k^2-2\cdot16k^2=-16\)

\(\Rightarrow4k^2+27k^2-32k^2=-16\)

\(\Rightarrow-k^2=-16\)

\(\Rightarrow k^2=16\)

\(\Rightarrow k=\pm4\)

Với k = 4

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{3}=4\\\dfrac{z}{4}=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot4=8\\y=3\cdot4=12\\z=4\cdot4=16\end{matrix}\right.\)

Với k = -4 

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-4\\\dfrac{y}{3}=-4\\\dfrac{z}{4}=-4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot-4=-8\\y=3\cdot-4=-12\\z=4\cdot-4=-16\end{matrix}\right.\) 

Vậy: ...

9 tháng 1

b) Đặt: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\) 

Ta có: \(2x^2+2y^2-3z^2=-100\)

\(\Rightarrow2\cdot\left(3k\right)^2+2\cdot\left(4k\right)^2-3\cdot\left(5k\right)^2=-100\)

\(\Rightarrow2\cdot9k^2+2\cdot16k^2-3\cdot25k^2=-100\)

\(\Rightarrow18k^2+32k^2-75k^2=-100\)

\(\Rightarrow-25k^2=-100\)

\(\Rightarrow k^2=-\dfrac{100}{-25}=4\)

\(\Rightarrow k=\pm2\)

Với k = 2

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=2\\\dfrac{y}{4}=2\\\dfrac{z}{5}=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot3=6\\y=2\cdot4=8\\z=2\cdot5=10\end{matrix}\right.\)

Với k = -2

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-2\\\dfrac{y}{4}=-2\\\dfrac{z}{5}=-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot-3=-6\\y=2\cdot-4=-8\\z=2\cdot-5=-10\end{matrix}\right.\)

Vậy: ...