K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2021

Đề bài

19 tháng 5 2021

Đề bài thật

23 tháng 8 2019

Ta có : \(\frac{x-5}{5x-1}=\frac{4x-10}{20x+4}\)

=> \(\frac{x-5}{5x-1}=\frac{2x-5}{10x+2}\)

=> (x - 5)(10x + 2) = (2x - 5)(5x - 1)

=> 10x2  + 2x - 50x - 10 = 10x2 - 2x - 25x + 5

=> 10x2 - 48x - 10x2 + 27x = 5 + 10

=> -21x = 15

=> x = 15 : (-21) = -5/7

Thay x = -5/7 vào \(\frac{x-5}{5x-1}=\frac{y}{3}\)

=> \(\frac{-\frac{5}{7}-5}{5.\left(-\frac{5}{7}\right)-1}=\frac{y}{3}\)

=> \(\frac{-\frac{40}{7}}{-\frac{32}{7}}=\frac{y}{3}\)

=> \(\frac{5}{4}=\frac{y}{3}\)

=> 4y = 15

=> y = 15/4

Vậy ...

Ta có: \(\frac{5}{y}=\frac{3}{x}\) => \(\frac{x}{3}=\frac{y}{5}\) => \(\frac{x^2}{9}=\frac{y^2}{25}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x^2}{9}=\frac{y^2}{25}=\frac{y^2+x^2}{25+9}=\frac{125}{34}\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=\frac{125}{34}\\\frac{y^2}{25}=\frac{125}{34}\end{cases}}\)  => \(\hept{\begin{cases}x^2=\frac{125}{34}.9=\frac{1125}{34}\\y^2=\frac{125}{34}.25=\frac{3125}{34}\end{cases}}\) => \(\hept{\begin{cases}x=\pm\frac{15\sqrt{170}}{34}\\y=\pm\frac{25\sqrt{170}}{34}\end{cases}}\)

5 tháng 6 2019

#)Giải :

\(\frac{x}{5}=\frac{y}{3}\)và x2 - y2 = 4 ( x,y > 0 )

\(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có : 

\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{5^2-3^2}=\frac{-4}{-16}=\frac{1}{4}\)

\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)

\(\Rightarrow\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)

Vậy ...................................................

trả lời 

vậy =5/2

chúc bn 

hc tốt

30 tháng 8 2019

a. x^2.y^2=162

ta có \(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}\)=>\(\frac{x^2}{4}=\frac{y^2}{1}=\frac{z^2}{9}\)

=>\(\frac{x^2}{4}.\frac{y^2}{1}=\frac{z^4}{81}\)còn lại do đề sai :))

30 tháng 8 2019

b.\(\frac{2x}{3}=\frac{3y}{4}=\frac{z}{5}\)

=>\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{5}=\frac{x-y+z}{....}=\frac{26}{....}\)nhân phân phối là xong :))

13 tháng 8 2019

a,Ta có : \(\frac{x}{x}=\frac{4y}{7}\) => \(1=\frac{4y}{7}\)=> \(2x=\frac{4y}{7}\)=> 14x = 4y => 7x = 2y => \(\frac{x}{2}=\frac{y}{7}\)=> \(\frac{2x}{4}=\frac{y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{4}=\frac{y}{7}=\frac{2x-y}{4-7}=\frac{3}{-3}=-1\)

=> \(\hept{\begin{cases}\frac{2x}{4}=-1\\\frac{y}{7}=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=-4\\y=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-7\end{cases}}\)

b, \(\frac{x}{4}=\frac{y}{3}\)=> \(\frac{x^2}{16}=\frac{y^2}{9}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2-y^2}{16-9}=\frac{36}{7}\)

=> Từ đó suy ra x,y không thỏa mãn điều kiện

13 tháng 8 2019

a. \(\frac{x}{x}=\frac{4y}{7}\)=> 4y = 7 => y = \(\frac{7}{4}\)

2x - y = 3 => 2x = \(\frac{19}{4}\) => x = \(\frac{19}{8}\)

b. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{4}=\frac{y}{3}=\frac{x^2-y^2}{4^2-3^2}=\frac{36}{7}\)

=> x,y \(\in\varnothing\)

16 tháng 9 2016

bài 12 :

a,\(\left(x-\frac{1}{2}\right)^2=0\)

Mà: 02=0

=> \(\left(x-\frac{1}{2}\right)^2=0^2\)

\(\Rightarrow x-\frac{1}{2}=0\)

\(\Rightarrow x=\frac{1}{2}\)

b,  \(\left(x-2\right)^2=1\)

Mà : 1=12

\(\Rightarrow\left(x-2\right)^2=1^2\)

=> x - 2 = 1

=> x = 3

c, \(\left(2x-1\right)^3=-8\)

\(\Rightarrow\left(2x-1\right)=-2\)

Vì -8 =-23

nên ...

=> 2x =-1

=> x=0.5

d.\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)

cái này cũng như mấy cái trên thôi

 

21 tháng 9 2016

Bài 12:

a) \(\left(x-\frac{1}{2}\right)^2=0\)

\(\Rightarrow x-\frac{1}{2}=0\)

\(x=\frac{1}{2}\)

b) \(\left(x-2\right)^2=1\)

\(x-2=\pm1\)

  • Nếu \(x-2=1\)

\(x=3\)

  • Nếu \(x-2=-1\)

\(x=1\)

c) \(\left(2x-1\right)^3=-8\)

\(\Rightarrow2x-1=-2\)

\(2x=-1\)

\(x=-\frac{1}{2}\)

d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)

\(x+\frac{1}{12}=\pm\frac{1}{4}\)

  • Nếu \(x+\frac{1}{12}=\frac{1}{4}\)

\(x=\frac{1}{6}\)

  • Nếu \(x+\frac{1}{12}=-\frac{1}{4}\)

\(x=-\frac{1}{3}\)

Bài 13: có người làm rồi

Bài 14:

a) \(25^3\div5^2\)

\(=\left(5^2\right)^3\div5^2\)

\(=5^6\div5^2=5^4\)

b) \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)

\(=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)

\(=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)

c) \(3-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)

\(=3-1+\frac{1}{4}:2\)

\(=2+\frac{1}{8}=2\frac{1}{8}\)

9 tháng 10 2020

\(\text{Đặt:}\frac{x}{5}=\frac{y}{3}=k\Rightarrow x=5k;y=3k\Rightarrow x^2-y^2=16k^2=16\Leftrightarrow k=1\text{ hoặc }-1\)

\(k=1\text{ thì }x=5;y=3\)

\(k=-1\text{ thì }x=-5;y=-3\)

9 tháng 10 2020

Đặt \(\frac{x}{5}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=5k\\y=3k\end{cases}}\)

x2 - y2 = 16

<=> ( 5k )2 - ( 3k )2 = 16

<=> 25k2 - 9k2 = 16

<=> 16k2 = 16

<=> k2 = 1

<=> k = ±1

Với k = 1 => x = 5 ; y = 3

Với k = -1 => x = -5 ; y = -3

25 tháng 10 2016

ta có: \(\frac{x}{2}=\frac{y}{3}\)

=> \(\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2\)

=> \(\frac{x^2}{8}=\frac{y^2}{9}=\frac{x^2-y^2}{8-9}=\frac{-16}{-1}=16\)

=>\(x^2=16.9=128\)

=> x = \(\sqrt{128}\)

hoặc x = -\(\sqrt{128}\)

\(y^2=16.9=144\)

=> y= 12 hoặc y = -12

ta có \(\frac{y}{4}=\frac{z}{5}\)

Với y = 12 => z =( 5.12 ) : 4 =15

Với y = -12 => z = -15

1 tháng 9 2016

Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\\x^2-y^2=-16\end{cases}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}}\)

\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{-16}{-80}=\frac{1}{5}\)

\(\Rightarrow x^2=\frac{1}{5}.64=\frac{64}{5}\Rightarrow x=+_-\sqrt{\frac{64}{5}}\)

     \(y^2=\frac{1}{5}.144=\frac{144}{5}\Rightarrow y=+_-\sqrt{\frac{144}{5}}\)

     \(z^2=\frac{1}{5}.255=51\Rightarrow z=+_-\sqrt{51}\)

CHÚC BẠN HỌC TỐT

5 tháng 7 2020

Mình 

không 

bít

làm!

Bài làm

1. thu gọn đa thức:

a. A(x) = x3 + x2 - 5x + 1

Thu gọn rồi nhé.

b. B(x)= -x + 4x2 - x3 -3x2 + 5

Thu gọn luôn rồi :v

Tính A(x)+B(x), tính A(x)- B(x)

A(x) + B(x) = x3 + x2 - 5x + 1 + (-x) + 4x2 - x3 -3x2 + 5

                  = x3 + x2 - 5x + 1 - x + 4x2 - x3 - 3x2 + 5

                  = ( x3 - x3 ) + ( x2 + 4x2 - 3x2 ) + ( -5x - x ) + ( 1 + 5 )

                  = 2x2 - 6x + 6

Vậy A(x) + B(x) = 2x2 - 6x + 6

A(x) - B(x) = x3 + x2 - 5x + 1 - [(-x) + 4x2 - x3 -3x2 + 5]

                 = x3 + x2 - 5x + 1 + x - 4x2 + x3 + 3x2 - 5

                 = ( x3 + x3 ) + ( x2 - 4x2 + 3x2 ) + ( -5x + x ) + ( 1 - 5 )

                 = 2x3 - 4x - 4

Vậy A(x) - B(x) = 2x3 - 4x - 4

b. Tìm x để A(x)- B(x)=0

Để A(x) - B(x) = 0

<=> 2x3 - 4x - 4 = 0

Tự giải tiếp ra nhé. Bài dài mà mình lười. thông cảm :L

2. cho A=  5x3y2, B= −15xy3z

a. tính A.B

A . B = ( 5x3y2 ) . ( -15xy3z )

A . B = -75x4y5z

Vậy A . B = -75x4y5z

b. tìm bậc của A.B

Bậc của A . B là 10

3. tìm nghiệm các đa thức:

a. A(x) = x2 - x

Để đa thức A(x) có nghiệm thì:

x2 - x = 0

=> x( x - 1 ) = 0

=> x = 0 hoặc x - 1 = 0

=> x = 0 hoặc x = 1

Vậy x = 0 hoặc x = 1 là nghiệm của đa thức A(x)

b.B(x) = x2 - 1

Để đa thức B(x) có nghiệm thì:

x2 - 1 = 0

=> x2 = 1

=> x = + 1

Vậy x = + 1 là nghiệm của đa thức B(x)

c.C(x) = x2 + 1

Để đa thức C(x) có nghiệm thì:

x2 + 1 = 0 

=> x2 = -1 ( vô lí )

Vậy đa thức trên không có nghiệm.

d.D(x) = x3 - x

Để đa thức D(x) có nghiệm thì:

x3 - x = 0

=> x( x2 - 1 ) = 0

=> x = 0 hoặc x2 - 1 = 0

=> x = 0 hoặc x2 = 1

=> x = 0 hoặc x = + 1 

Vậy x = 0 hoặc x = + 1 là nghiệm của đa thức D(x) 

20 tháng 11 2016

xem lại đề ,chỗ (x-y-z)=0

20 tháng 11 2016

mk sửa rùi