Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : \(x\ge-2;y\ge-3\)
pt (1) <=> \(x^3+x=\left(y+1\right)^3+\left(y+1\right)\)
<=> \(\left(y+1\right)^3-x^3+\left(y+1\right)-x=0\)
<=> \(\left(y+1-x\right)\left(\left(y+1\right)^2+\left(y+1\right)x+x^2+1\right)=0\)
<=> \(y+1-x=0\) vì \(\left(y+1\right)^2+\left(y+1\right)x+x^2+1>0\)dễ chứng minh.
<=> \(x=y+1\)(1')
pt (2) <=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{y+3}-3\right)^2}=1\)
<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{y+3}-3\right|=1\)(2')
Thế (1') vào (2') ta có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)
Có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=\left|\sqrt{y+3}-2\right|+\left|3-\sqrt{y+3}\right|\ge1\)
Do đó: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)<=> \(\left(\sqrt{y+3}-2\right)\left(3-\sqrt{y+3}\right)\ge0\)
<=> \(2\le\sqrt{y+3}\le3\)
<=> \(4\le y+3\le9\)
<=> \(1\le y\le6\)(tm)
Khi đó: x = y + 1 với mọi y thỏa mãn \(1\le y\le6\)
Vậy tập nghiệm \(S=\left\{\left(y+1;y\right):1\le y\le6\right\}\)