
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a/ Sai đề à??
\(\left(2x^3-3\right)^2-\left(4x^2-9\right)=0\)
\(\Leftrightarrow4x^6-12x^3+9-4x^2+9=0\)
\(\Leftrightarrow4x^6-13x^2-4x^2+18=0\)
b/ \(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x^2+3+2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\) (do \(x^2+3+2x>0\forall x\))
d/ \(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

a) \(\left(x+6\right)^2-x\left(x+9\right)=0\)
\(\Leftrightarrow\)\(x^2+12x+36-x^2-9x=0\)
\(\Leftrightarrow\)\(3x+36=0\)
\(\Leftrightarrow\)\(x=-12\)
Vậy...
b) \(6x\left(2x+5\right)-\left(3x+4\right)\left(4x-3\right)=9\)
\(\Leftrightarrow\)\(12x^2+30x-12x^2-7x+12=9\)
\(\Leftrightarrow\)\(23x+12=9\)
\(\Leftrightarrow\)\(x=-\frac{3}{23}\)
Vậy
c) \(2x\left(8x+3\right)-\left(4x+1\right)=13\)
\(\Leftrightarrow\)\(16x^2+6x-4x-1=13\)
\(\Leftrightarrow\)\(16x^2+2x-14=0\)
\(\Leftrightarrow\)\(8x^2+x-7=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(8x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=\frac{7}{8}\end{cases}}\)
Vậy
d) \(\left(x-4\right)^2-x\left(x+4\right)=0\)
\(\Leftrightarrow\)\(x^2-8x+16-x^2-4x=0\)
\(\Leftrightarrow\)\(-12x+16=0\)
\(\Leftrightarrow\)\(x=\frac{4}{3}\)
Vậy
e) \(\left(x-2\right)^2-\left(2x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x^2-4x+4-2x^2+x+6=0\)
\(\Leftrightarrow\)\(-x^2-3x+10=0\)
\(\Leftrightarrow\)\(\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
Vậy

a.
\(x\left(x+3\right)-2x-6=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy......
a) x ( x + 3 ) - 2x - 6 = 0
<=> x2 + 3x - 2 ( x + 3 ) = 0
<=> x ( x + 3 ) - 2 ( x + 3 ) = 0
<=> ( x + 3 ) ( x - 2 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là : S = { -3 ; 2 }
b) 7 - ( 2x + 4 ) = - ( x + 4 )
<=> 7 - 2x - 4 = -x - 4
<=> -2x + x = -4 -7+4
<=> -x = -7
<=> x = 7
Vậy phương trình có nghiệm duy nhất là x = 7
c) x2 - 4x + 4 = 9
<=> ( x2 - 4x + 4 ) - 9 = 0
<=> ( x - 2 )2 - 32 = 0
<=> ( x - 2 + 3 ) ( x - 2 - 3 ) = 0
<=> ( x + 1 ) ( x - 5 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là S = { -1 ; 5 }
d) ( x2 - 6x + 9 ) - 4 = 0
<=> ( x - 3 )2 - 22 = 0
<=> ( x - 3 + 2 ) ( x - 3 - 2 ) = 0
<=> ( x - 1 ) ( x - 5 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là S = { 1 ; 5 }

\(a)\)\(x^3-x^2-x+1=0\)
\(\Leftrightarrow\)\(x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(x-1\right)^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=-1\)
Chúc bạn học tốt ~

a) x3- x2 - x +1 = 0. ⇒ ( x3 - x2 ) - ( x - 1 ) = 0
⇒ x2. ( x - 1) - 1.( x - 1 ) = 0 ⇒ ( x2 - 1 ).(x - 1) = 0
⇒ x2 - 1 = 0 hoặc x - 1 = 0 ⇒ x2 = 1 hoặc x = 1
Vậy x = 1
b: Sửa đề: \(\left(2x-3\right)^2-\left(4x^2-9\right)=0\)
=><\(4x^2-12x+9-4x^2+9=0\)
=>-12x+18=0
=>x=3/2
c: \(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)
=>(x^2-3)(x^2+2x+3)=0
=>x^2-3=0
hay \(x=\pm\sqrt{3}\)
d: =>(x+5)(2-x)=0
=>x=2 hoặc x=-5

1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)

ta có x^4+2x^3-6x-9=0
=> (x^4-9) + (2x^3-6x) = 0
=> [(x^2)2 - 32 ] + 2x(x^2-3) = 0
=> (x^2-3)(x^2+3) + 2x(x^2-3) = 0
=> ( x^2-3) ( x^2+3+2x) = 0
phần còn lại bạn tự làm nhé
ta có
\(x^4+2x^3-6x-9=0\)
\(\Leftrightarrow x^4+2x^3+x^2=x^2+6x+9\)
\(\Leftrightarrow\left(x^2+x\right)^2=\left(x+3\right)^2\Leftrightarrow\orbr{\begin{cases}x^2+x=x+3\\x^2+x=-x-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=3\\x^2+2x+3=0\end{cases}}}\)
Nên \(x^2=3\Leftrightarrow x=\pm\sqrt{3}\)