Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=x^3+y^3+z^3+axyz\)
Gọi \(Q\) và \(r\) lần lượt là thương và dư của phép chia \(A=x^3+y^3+z^3+axyz\) cho \(\left(x+y+z\right)\)
Thực hiện phép chia \(A=x^3+y^3+z^3+axyz\) \(:\) \(\left(x+y+z\right)\), ta được:
\(Q=x^2+y^2+z^2-xy-yz-xz-yz\left(a+2\right)\) và \(r=-yz\left(x+z\right)\left(a+3\right)\)
Khi đó, \(A=x^3+y^3+z^3+axyz=\left(x+y+z\right)\left[x^2+y^2+z^2-xy-yz-xz-yz\left(a+2\right)\right]+\left[-yz\left(x+z\right)\left(a+3\right)\right]\)
Muốn \(A\) chia hết cho \(x+y+z\) thì đa thức dư phải đồng nhất bằng \(0\), tức \(r=0\)
Hay \(-yz\left(x+z\right)\left(a+3\right)=0\) (với mọi \(x,\) \(y,\) \(z\in Q\) )
Do đó, \(a+3=0\) \(\Rightarrow\) \(a=-3\)
Vậy, hằng số \(a\) cần tìm là \(-3\)
Ta có :
\(a^2x^2+axyz-ax^2z-a^2xy\)
\(=\left(a^2x^2-a^2xy\right)+\left(axyz-ax^2z\right)\)
\(=a^2x\left(x-y\right)-axz\left(x-y\right)\)
\(=\left(x-y\right)\left(a^2x-axz\right)\)
\(=ax\left(a-z\right)\left(x-y\right)\)
Lời giải:
a.
$=(x^2)^2+(\frac{1}{2}y^4)^2+2.x^2.\frac{1}{2}y^4-x^2y^4$
$=(x^2+\frac{1}{2}y^4)^2-(xy^2)^2$
$=(x^2+\frac{1}{2}y^4-xy^2)(x^2+\frac{1}{2}y^4+xy^2)$
b.
$=(\frac{1}{2}x^2)^2+(y^4)^2+2.\frac{1}{2}x^2.y^4-x^2y^4$
$=(\frac{1}{2}x^2+y^4)^2-(xy^2)^2$
$=(\frac{1}{2}x^2+y^4-xy^2)(\frac{1}{2}x^2+y^4+xy^2)$
c.
$=(8x^2)^2+(y^2)^2+2.8x^2.y^2-16x^2y^2$
$=(8x^2+y^2)^2-(4xy)^2=(8x^2+y^2-4xy)(8x^2+y^2+4xy)$
d.
$=\frac{64x^4+y^4}{64}=\frac{1}{64}(8x^2+y^2-4xy)(8x^2+y^2+4xy)$
c: \(64x^4+y^4\)
\(=64x^4+16x^2y^2+y^4-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)
\(1.x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)=\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)\)
\(2.a^2x^2+axyz-ax^2z-a^2xy\)
\(=ax\left(ax+yz-xz-ay\right)\)
\(=ax\left[x\left(a-z\right)-y\left(a-z\right)\right]\)
\(=ax\left(x-y\right)\left(a-z\right)\)