Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^2=t\left(t\ge0\right)\), phương trình trở thành:
\(t^2-2\left(m+1\right)t+2m+1=0\left(1\right)\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có hai nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2>0\\t_1+t_2=2m+2>0\\t_1t_2=2m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne0\end{matrix}\right.\)
Phương trình có 2 nghiệm pb khi:
\(\Delta'=\left(m+1\right)^2-\left(m^2+4\right)>0\)
\(\Leftrightarrow2m-3>0\)
\(\Leftrightarrow m>\dfrac{3}{2}\)
Để pt (1) có 2 nghiệm phân biệt
\(\Delta'=4-\left(3m-1\right)=5-3m>0\Leftrightarrow m< \dfrac{5}{3}\)
Để pt (1) có nghiệm
\(\Delta'=5-3m\ge0\Leftrightarrow m\le\dfrac{5}{3}\)
(x1-1)(x2^2-5x2+m-4)=0
=>x1=1 và x2^2-x2(x1+x2-1)+x1x2+1=0
=>x1=1 và x2^2-x2x1-x2^2+x2+x1x2+1=0
=>x1=1 và x2=-1
x1*x2=m-3
=>m-3=-1
=>m=2
2) có 2 nghiêm khi \(\Delta^,=1-m+1>0\Rightarrow m< 2\)
1) theo đề bài ta có x1=2
Theo viets ta có x1+x2=2 => x2 =1
\(x_1.x_2=m-1=2\Rightarrow m=3\)
Bạn làm sai rồi !
Đề cho 1 No chứ đâu phải là 2 No ?
Mình ghi tắt:[No là nghiệm]
Thông cảm mình ghi tắt quen tay~~@~~
b) Đặt x 2 = t (t ≥ 0). Khi đó ta có phương trình: t 2 – mt – m – 1 = 0 (*)
Δ = m 2 - 4(-m - 1) = m 2 + 4m + 4 = m + 2 2
Phương trình đã cho có 4 nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm dương phân biệt
Đặt \(x^2=t\ge0\) pt trở thành:
\(t^2-\left(m+2\right)t+m+1=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+2\right)^2-4\left(m+1\right)>0\\x_1+x_2=m+2>0\\x_1x_2=m+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2\ge0\\m>-2\\m>-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m\ne0\end{matrix}\right.\)