Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-5=9\\2x-3=9\\x-1=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=6\\x=10\end{matrix}\right.\)
Vậy \(x=\left\{3,5;6;10\right\}\)
d: Sửa đề: \(\left(4x-5\right)^2\cdot\left(2x-3\right)\left(x-1\right)=9\)
a: \(\Leftrightarrow\left(2x^2+x\right)^2-3\left(2x^2+x\right)-\left(2x^2+x\right)+3=0\)
\(\Leftrightarrow\left(2x^2+x\right)\left(2x^2+x-3\right)-\left(2x^2+x-3\right)=0\)
\(\Leftrightarrow\left(2x^2+x-3\right)\left(2x^2+x-1\right)=0\)
\(\Leftrightarrow\left(2x^2+3x-2x-3\right)\left(2x^2+2x-x-1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)\left(x+1\right)\left(2x-1\right)=0\)
hay \(x\in\left\{-\dfrac{3}{2};1;-1;\dfrac{1}{2}\right\}\)
\(x^4-2x^3+3x^2-4x+3=0\)
\(\Leftrightarrow x^4-4x^3+6x^2-4x+1+2x^3-6x^2+6x-2+3x^2-6x+3+1=0\)
\(\Leftrightarrow\left(x-1\right)^4+2\left(x^3-3x^2+3x-1\right)+3\left(x^2-2x+1\right)+1=0\)
\(\Leftrightarrow\left(x-1\right)^4+2\left(x-1\right)^3+3\left(x-1\right)^2+1=0\)
Dê thấy: \(\left(x-1\right)^4+2\left(x-1\right)^3+3\left(x-1\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^4+2\left(x-1\right)^3+3\left(x-1\right)^2+1>0\) (
Hay pt vô nghiệm
1) Đặt \(x-2=a,\)\(2x-4=b,7-3x=c\)
⇒ \(\left\{{}\begin{matrix}a+b+c=1\\a^3+b^3+c^3=1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}a+b+c=1\\\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\end{matrix}\right.\)
⇒ \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
⇒ \(\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{5}{2}\end{matrix}\right.\)
2) ĐK : \(x^2-x\ge0\)
gt ⇒ \(\left(x^4-2x^3+x\right)^2=2\left(x^2-x\right)\)
⇒ \(x^8-4x^7+4x^6+2x^5-4x^4-x^2+2x=0\)
⇒ \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x^4-2x^3+x^2+1\right)=0\)
⇒ \(\left[{}\begin{matrix}x=2\\x=1\\x=0\\x=-1\end{matrix}\right.\)(t/m)
a) x2-3x+10>0
Có x2-3x+10=x2-2x\(\frac{3}{2}\)+\(\frac{9}{4}\)+\(\frac{31}{4}\)=(x-\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0 với mọi x
=> x2-3x+10>0
b) 3x2+5x+20>0
3x2+5x+20=3(x2+\(\frac{5}{3}\)x+\(\frac{20}{3}\))=3(x2+2.x.\(\frac{5}{6}\)+\(\frac{25}{36}\)+\(\frac{215}{36}\))=3(x+\(\frac{5}{6}\))2+\(\frac{215}{12}\)>0 với mọi x
=>3x2+5x+20 >0
c) -2x2-5x-15<0
-2x2-5x-15=-2(x2+\(\frac{5}{2}\)x+\(\frac{15}{2}\))=-2(x2+2.x.\(\frac{5}{4}\)+\(\frac{25}{20}\)+\(\frac{25}{4}\))=-2(x+\(\frac{5}{4}\))-\(\frac{25}{2}\)<0 với mọi x
-2x2-5x-15<0
a) Ta có: \(x^2-3x+10=x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{31}{4}=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}>0\)
Vậy x2 - 3x + 10 > 0 (đpcm)
b) Tương tự
\(Pt\Leftrightarrow t^2+2t-3=0\left(t=x^2-x\right)\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2-x=1\\x^2-x=-3\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)