K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

\(x^4+3x^3-\left(2m-1\right)x^2-\left(3m+1\right)x+m^2+m=0\)

Để PT có 4 nghiệm phân biệt thì 

\(\Leftrightarrow\hept{\begin{cases}1\ne0\left(lđ\right)\\m^2+m\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne0\\m\ne-1\end{cases}}}\)

Vậy \(m\ne0;m\ne-1\)thì PT có 4 nghiệm phân biệt

26 tháng 3 2020

2 trường hợp

5 tháng 6 2021

Xét \(\Delta'=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\)\(\ge0;\forall m\)

=>Pt luôn có hai nghiệm 

Theo viet có: \(x_1+x_2=2\)

Do \(x_1^2\) là một nghiệm của pt \(\Rightarrow x_1^2-2x_1-m^2+2m=0\)\(\Leftrightarrow x_1^2=2x_1+m^2-2m\)

\(x_1^2+2x_2=3m\)

\(\Leftrightarrow2x_1+2x_2+m^2-2m=3m\)

\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)

\(\Leftrightarrow4+m^2-5m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=1\end{matrix}\right.\)

Vậy...

9 tháng 11 2019

+) Cho pt: 2x+ mx + m - 3 = 0. Chứng minh rằng pt có 2 nghiệm phân biệt

Ta có: \(a=2;b=m;c=m-3.\)
\(\text{Δ}=b^2-4ac=m^2-4.2.\left(m-3\right)=m^2-8m+24-\left(m-4\right)^2+8\)

=> đpcm

+) Cho pt: x2 - 2(2m-1)x + 3m2 - 4 = 0. Chứng minh rằng pt luôn có nghiệm với mọi m;  Tìm m để x12 + x22 - x1x= 5 (*)

Ta có: \(a=1;b'=-\left(2m-1\right);c=3m^2-4\)

\(\text{Δ′}=-\left(2m-1\right)^2-1.\left(3m^2-4\right)=4m^2-4m+1-3m^2+4=m^2-4m+5=\left(m-2\right)^2+1\)

=> Pt có nghiệm với mọi m

ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-1\left(1\right)\\x_1x_2=\frac{c}{a}=3m^2-4\left(2\right)\end{cases}}\)

(*)\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=5\)

    thay (1) và (2) vào (*) ta có: 

\(\left(2m-1\right)^2-3\left(3m^2-4\right)=5\)

\(\Leftrightarrow4m^2-4m+1-9m^2+12=5\)

\(\Leftrightarrow5m^2+4m-8=0\)

\(\Leftrightarrow\begin{cases}m=\frac{-2+2\sqrt{11}}{2}\\m=\frac{-2-2\sqrt{11}}{2}\end{cases}\)

Vậy \(m=\frac{-2+2\sqrt{11}}{2}\)hoặc \(m=\frac{-2-2\sqrt{11}}{2}\)thoả mãn x12 + x22 - x1x= 5

(Câu này mình nghĩ là tìm m để  x12 + x22 + x1x= 5 thì đúng hơn, nếu đúng thì bạn bình luận để mình làm nhé!)

Học tốt nhé!

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

Lời giải:
Để pt có 2 nghiệm pb thì:

$\Delta'=m^2-(-3m+9)>0$

$\Leftrightarrow m^2+3m-9>0$

$\Leftrightarrow m> \frac{3\sqrt{5}-3}{2}$ hoặc $m< \frac{-3\sqrt{5}-3}{2}$

Áp dụng định lý Viet:

$x_1+x_2=2m; x_1x_2=-3m+9$

2 nghiệm có đúng một nghiệm lớn hơn 1, tức là nghiệm kia nhỏ hơn hoặc bằng 1.

Nếu nghiệm kia bằng 1, tức $1^2-2m-3m+9=0$

$\Rightarrow m=2$

Khi đó, pt trở thành $x^2-4x+3=0$

$\Rightarrow (x-1)(x-3)=0\Rightarrow x=3$ là nghiệm còn lại (thỏa mãn đề)

Nếu nghiệm kia $<1$

Điều này xảy ra khi: $(x_1-1)(x_2-1)< 0$ 

Để $(x_1-1)(x_2-1)< 0$

$\Leftrightarrow x_1x_2-(x_1+x_2)+1< 0$

$\Leftrightarrow -3m+9-2m+1< 0$

$\Leftrightarrow 10-5m< 0$

$\Leftrightarrow m< 2$

Vậy tóm lại $m\leq 2$ thì thỏa mãn đề.