K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

x4-14=(x2+1)(x2-1)=(x2+1)(x-1)(x+1)

19 tháng 10 2015

1) x4y2 + x2y4 + x4y+ x2y = (x4y2 + x2y4) + (x4y+ x2y5) = x2y2.(x+ y2) + x2y3.(x+ y2) = x2y2.(x2+ y2) (1 + y) = [xy.(x2 + y2)].[xy(1+y)]

=> x4y2 + x2y4 + x4y+ x2y5 chia cho xy.(x2 + y2)  bằng xy.(1+ y)

2) A = (n2 - 8)+ 36 = n4 - 16n2 + 100  = (n+ 20n2 + 100) - 36n= (n+ 10)- (6n)= (n2 - 6n+ 10).(n+ 6n+ 10)

Vậy để A là số nguyên tố thì n- 6n + 10 = 1 hoặc n+ 6n + 10 = 1

Mà n là số tự nhiên nên n2+ 6n + 10 > 1 

=>  n- 6n + 10 = 1  => n- 6n + 9 = 0 => (n -3)= 0 => n = 3 

Vậy....

3) a) = xy(x - y) - xz(x + z) + yz.[(x+ z) + (x - y)] = xy(x - y) - xz(x + z) + yz.(x + z) + yz(x - y)

= [xy(x - y) + yz.(x - y)] + [(yz.(x+ z) - xz(x+z)] = y(x - y)(x+ z) + z(x + z).(y - x) = (x+ z)(x- y).(y - z)

b) = (x+ x)- (2x)- 4(x+3) = (x+ x + 2x).(x+ x- 2x) - 4(x+3) = (x+ 3x).(x- x) - 4(x+3)

= (x+3).[x.(x2 - x) - 4] = (x+3).(x- x2 - 4) = (x+3).(x3 - 8 + 4 - x2) = (x+3).[(x - 2)(x2 + 2x + 4) - (x - 2).(x+2)]

= (x + 3).(x - 2).(x+ 2x + 4 - x- 2) = (x + 3).(x - 2).(x+ x + 2) 

4) a) n+ 1/4 = (n+ n+ 1/4) - n= (n+ 1/2)2 - n= (n2 - n + 1/2).(n+ n + 1/2) = [n(n - 1) + 1/2].[n.(n+1) + 1/2]

Áp dụng công thức ta có:

A = \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right).\left(4^4+\frac{1}{4}\right)...\left(20^4+\frac{1}{4}\right)}=\frac{\frac{1}{2}.\left(1.2+\frac{1}{2}\right).\left(2.3+\frac{1}{2}\right).\left(3.4+\frac{1}{2}\right)...\left(18.19+\frac{1}{2}\right).\left(19.20+\frac{1}{2}\right)}{\left(1.2+\frac{1}{2}\right).\left(2.3+\frac{1}{2}\right).\left(3.4+\frac{1}{2}\right).\left(4.5+\frac{1}{2}\right)...\left(19.20+\frac{1}{2}\right).\left(20.21+\frac{1}{2}\right)}\)

A = \(\frac{\frac{1}{2}}{20.21+\frac{1}{2}}=\frac{1}{841}\)

 

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

a) ĐKXĐ: $x\neq \pm 1$

\(\frac{x^4-4x^2+3}{x^4+6x^2-7}=\frac{x^2(x^2-1)-3(x^2-1)}{x^2(x^2-1)+7(x^2-1)}=\frac{(x^2-3)(x^2-1)}{(x^2-1)(x^2+7)}=\frac{x^2-3}{x^2+7}\)

b) ĐKXĐ: Với mọi $x\in\mathbb{R}$

\(\frac{x^4+x^3-x-1}{x^4+x^4+2x^2+x+1}=\frac{(x^4-x)+(x^3-1)}{(x^4+x^3+x^2)+(x^2+x+1)}=\frac{x(x^3-1)+(x^3-1)}{x^2(x^2+x+1)+(x^2+x+1)}\)

\(=\frac{(x^3-1)(x+1)}{(x^2+1)(x^2+x+1)}=\frac{(x-1)(x^2+x+1)(x+1)}{(x^2+1)(x^2+x+1)}=\frac{x^2-1}{x^2+1}\)

c) ĐK: $x\neq 1;-2$

\(\frac{x^3+3x^2-4}{x^3-3x+2}=\frac{x^2(x-1)+4(x^2-1)}{x^2(x-1)+x(x-1)-2(x-1)}=\frac{(x-1)(x^2+4x+4)}{(x-1)(x^2+x-2)}\)

\(=\frac{(x-1)(x+2)^2}{(x-1)(x-1)(x+2)}=\frac{x+2}{x-1}\)

d) ĐK: $x^2+3x-1\neq 0$

\(\frac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}=\frac{(x^2+3x)^2-1}{(x^2+3x)^2-2x^2-6x+1}\)

\(=\frac{(x^2+3x-1)(x^2+3x+1)}{(x^2+3x)^2-2(x^2+3x)+1}=\frac{(x^2+3x-1)(x^2+3x+1)}{(x^2+3x-1)^2}=\frac{x^2+3x+1}{x^2+3x-1}\)

10 tháng 1 2016

M = (x4)2 - (1/x4)2

M = x8 - 1/x8

 

10 tháng 1 2016

Trước hết, tính  \(x^4\)  theo   \(a\) . Ta có:

\(\left(x^2-\frac{1}{x^2}\right):\left(x^2+\frac{1}{x^2}\right)=a\)

\(\Leftrightarrow\)  \(\left(\frac{x^4-1}{x^2}\right):\left(\frac{x^4+1}{x^2}\right)=a\)

\(\Leftrightarrow\)  \(\frac{x^4-1}{x^4+1}=a\)  \(\Rightarrow\) \(x^4-1=ax^4+a\) \(\Rightarrow\)  \(x^4-ax^4=a+1\) \(\Rightarrow\)  \(x^4=\frac{a+1}{1-a}\)  (do  \(a\ne0\) )

Thay vào  \(M\)  và rút gọn được   \(M=\frac{2a}{a^2+1}\)

 

16 tháng 10 2020

a, \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=\left(x^2-x+9\right)\left(x-3\right)\)

b, \(x^4-2x^3+2x-1=x^4-x^3-x^3+x^2-x^2+x-1=\left(x^3-x^2-x+1\right)\left(x-1\right)\)

\(=\left(x-1\right)^3\left(x+1\right)\)

...

8 tháng 7 2018

\(1)\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)\left(x-1\right)\\ =x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\cdot\left(x-1\right)^2\\ =6x^2+2-6\cdot\left(x^2-2x+1\right)\\ =6x^2+2-6x^2+12x-6\\ =12x-4\)

\(2)x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\\ =x\left(x^2-1\right)-\left(x^3+1\right)\\ =x^3-x-x^3-1\\=-x-1\)

\(3)\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x-4\right)\left(x+4\right)\\ =x^3-3x^2+3x-1-(x^3+8)+3\cdot\left(x^2-16\right)\\ =x^3-3x^2+3x-1-x^3-8+3x^2-48\\ =3x-55\)

26 tháng 8 2018

Thanks bạn

13 tháng 7 2017

2) \(x^4y+xy^4=xy\left(x^3+y^3\right)\)

4) \(x^4+x^2+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

28 tháng 7 2018

tích mình với

ai tích mình

mình tích lại

thanks