Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a + b + 8 = 0
=> x3 + 3x2 + 6x + y3 + 3y2 + 6y + 8 = 0
=> (x3 + 3x2 + 3x + 1) + (y3 + 3y2 + 3y + 1) + (3x + 3y + 6) = 0
=> (x + 1)3 + (y + 1)3 + 3(x + y + 2) = 0
=> (x + y + 2)[(x + 1)2 + (x + 1)(y + 1) + (y + 1)2 + 3] = 0
Vì (x + 1)2 + (x + 1)(y + 1) + (y + 1)2 + 3 \(>0\forall x;y\)
=> x + y + 2 = 0
=> x + y = -2
Vậy A = -2
xyz bạn ơi! tại sao từ dòng 3 lại thành dòng 4 vậy
thank you bạn!!! <3
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Điều kiện: \(\hept{\begin{cases}3\left(x+y\right)\ne0\\x^2-2xy+y^2\ne0\\6\left(x+y\right)\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x+y\ne0\\\left(x-y\right)^2\ne0\\x+y\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-y\\x\ne y\end{cases}}}\)
\(\frac{2x^3-2y^3}{3x+3y}:\frac{x^2-2xy+y^2}{6x+6y}\)
\(=\frac{2\left(x^3-y^3\right)}{3\left(x+y\right)}.\frac{6\left(x+y\right)}{\left(x-y\right)^2}\)
\(=\frac{2\left(x-y\right)\left(x^2+xy+y^2\right)}{3\left(x+y\right)}.\frac{6\left(x+y\right)}{\left(x-y\right)^2}\)
\(=\frac{4\left(x^2+xy+y^2\right)}{x-y}\)
đề dài nên T giải câu a thôi bn tự làm tiếp mấy câu khác nhé
2x^2 - 2y^2 - 6x - 6y
= 2(x^2-y^2) - 6(x+ y)
= 2(x-y)(x+y) - 6(x+y)
= (2(x-y)-6) (x+y)
giải
A=(3x-5)(2x+11)-(2x+3)(3x+7)
=6x^2+33x-10x-55-(6x^2+14x+9x+21)
=6x^2+33x-10x-55-6x^2-14x-9x-21
= -76
vậy biểu thức không phụ thuộc vào biến x,y
B=(2x+3)(4x^2-6x+9)-2(4x^3-1)
=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2
=29
vậy biểu thức không phụ thuộc vào biến x
x3 + y3 + 3x2 + 3y2 + 6x + 6y + 8
= x3 + y3 + 6x2 - 3x2 + 6y2 - 3y2 + 12x - 6x + 12y - 6y + 8 + 8 - 16
= ( x3 + 6x2 + 12x + 8 ) + ( y3 + 6y2 + 12y + 8 ) - 3x2 - 6x - 3y2 - 6y - 3 - 3 - 10
= ( x + 2 )3 + ( y + 2 )3 - 3 ( x2 + 2x + 1 ) - 3 ( y2 + 2y + 1 ) - 10
= ( x + 2 )3 + ( y + 2 )3 - 3 ( x + 1 ) 2 - 3 ( y + 1 )2 - 10