Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Leftrightarrow\left(x+1\right)\left(3x-5-3x+1\right)=x-4\Leftrightarrow-4\left(x+1\right)=x-4\)
\(\Leftrightarrow-4x-4=x-4\Leftrightarrow-4x-x=0\Leftrightarrow x=0\)
b, \(\left(x-2\right)\left(x+3\right)-\left(x+4\right)\left(x-7\right)=5-x\)
\(\Leftrightarrow x^2+x-6-x^2-3x+28=5-x\Leftrightarrow-2x+22=5-x\Leftrightarrow x=17\)
c, thiếu đề
d, \(3\left(x-7\right)\left(x+7\right)-\left(x-1\right)\left(3x+2\right)=13\)
\(\Leftrightarrow3x^2-147-3x^2+x+2=13\Leftrightarrow x=11+147=158\)
a.\(3x^2-2x-5-\left(3x^2+2x-1\right)=x-4\)
\(\Leftrightarrow-5x=0\Leftrightarrow x=0\)
b.\(x^2+x-6-\left(x^2-3x-28\right)=5-x\)
\(\Leftrightarrow5x=-17\Leftrightarrow x=-\frac{17}{5}\)
c.\(5\left(x^2-10x+21\right)-\left(5x^2-9x-2\right)=0\)
\(\Leftrightarrow-41x+107=0\Leftrightarrow x=\frac{107}{41}\)
d.\(3\left(x^2-49\right)-\left(3x^2-x-2\right)=13\Leftrightarrow x=158\)
1) <=>\(\left[\begin{array}{nghiempt}7-x=5x+1\\7-x=-5x-1\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=\frac{4}{3}\\x=-2\end{array}\right.\)
2)<=>\(\left[\begin{array}{nghiempt}x+1=3x+2\\x+1=-3x-2\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=-\frac{1}{4}\end{array}\right.\)
3)<=> \(\left[\begin{array}{nghiempt}x+15=3x-1\\x+15=1-3x\end{array}\right.\)
<=>\(\left[\begin{array}{nghiempt}x=8\\x=-\frac{7}{2}\end{array}\right.\)
4) \(\left[\begin{array}{nghiempt}x+7=x+7\\x+7=-x-7\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x\in R\\x=0\end{array}\right.\)
=> S=R
\(\frac{2}{7}\)x - \(\frac{1}{3}\)=\(\frac{3}{5}\)x-1
a: =3x^3-15x^2+21x
b: =-x^3+6x^2+5x-4x^2-24x-20
=-x^3+2x^2-19x-20
c: =9x^2+15x-3x-5-7x^2-14
=2x^2+12x-19
d: =10x^2-4x+2/3
1) x (x-2016) + 2015 (2016-x) = 0
x (x-2016) - 2015 (x- 2016) = 0
(x-2015)(x-2016) =0
\(\Rightarrow\orbr{\begin{cases}x-2015=0\\x-2016=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2015\\x=2016\end{cases}}}\)
Vậy x= 2015; 2016
2) -5x (x-15) + (15-x) = 0
-5x (x-15) - (x-15) =0
(-5x -1) (x-15) =0
\(\Rightarrow\orbr{\begin{cases}-5x-1=0\\x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}-5x=1\\x=15\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{5}\\x=15\end{cases}}}\)
Vậy x= -1/5; 15
3) 3x (3x-7) - (7-3x) =0
3x(3x-7) + (3x -7) =0
(3x+1) (3x-7) =0
\(\Rightarrow\orbr{\begin{cases}3x+1=0\\3x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=-1\\3x=7\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=\frac{7}{3}\end{cases}}}\)
Vậy x= -1/3 ; 7/3
Mình thu gọn 2 đa thức trước r mới cộng nhé
\(P\left(x\right)=3x^2+7+2x^4-3x^2-4-5x+2x^3\)
\(P\left(x\right)=\left(3x^2-3x^2\right)+\left(7-4\right)+2x^4-5x+2x^3\)
\(P\left(x\right)=2x^4+2x^3-5x+3\)
\(Q\left(x\right)=-3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)
\(Q\left(x\right)=\left(-3x^3+x^3\right)+2x^2+\left(-x^4+5x^4\right)+\left(x+4x\right)-2\)
\(Q\left(x\right)=-2x^3+4x^4+2x^2+5x-2\)
\(P\left(x\right)+Q\left(x\right)=2x^4+2x^3-5x+3-2x^3+4x^4+2x^2+5x-2\)
\(P\left(x\right)+Q\left(x\right)=\left(2x^4+4x^4\right)+\left(2x^3-2x^3\right)+\left(-5x+5x\right)+\left(3-2\right)+2x^2\)
\(P\left(x\right)+Q\left(x\right)=6x^4+1+2x^2\)
a) \(3x\left(x+1\right)-2\left(x+3\right)+5\left(x+7\right)\)
\(=3x^2+3x-2x-6+5x+35\)
\(=3x^2+6x+29\)
b) \(4\left(x^2-3x+5\right)-4\left(x^2+5x\right)-3x\left(x-7\right)\)
\(=4x^2-12x+20-4x^2-20x-3x^2+21x\)
\(=-3x^2-11x+20\)
c) \(3x\left(x-3\right)-2x\left(3-5x\right)-7\left(x-1\right)\)
\(=3x^2-9x-6x+10x^2-7x+7\)
\(=13x^2-22x+7\)
_______________
a) \(3x\left(x-3\right)-5\left(3x+x^2\right)=0\)
\(\Leftrightarrow3x^2-9x-15x-5x^2=0\)
\(\Leftrightarrow-2x^2-24x=0\)
\(\Leftrightarrow-2x\left(x+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-12\end{matrix}\right.\)
P(x)=2x^4+2x^3-5x-4
Q(x)=4x^4-2x^3+2x^2+5x-2
P(x)+Q(x)
=2x^4+2x^3-5x-4+4x^4-2x^3+2x^2+5x-2
=6x^4+2x^2-6
Tìm x hả ?