K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

đặt x-2016=a

y-2017=b

z-2018=c

ta có\(\frac{1}{\sqrt{a}}-\frac{1}{a}+\frac{1}{\sqrt{b}}-\frac{1}{b}+\frac{1}{\sqrt{c}}-\frac{1}{c}=\frac{3}{4}\)

=>\(\left(\frac{1}{\sqrt{a}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{b}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{c}}-\frac{1}{2}\right)^2=0\)

=>\(a=b=c=4\)

còn lại tự lm nốt

19 tháng 4 2019

oke cao van duc

thank nhiều nha

hok tốt

7 tháng 8 2016

e/(x+6)(x-1)(x2+5x+16)

7 tháng 8 2016

Help me!!!

31 tháng 7 2019

\(x^2-2x+3=t\left(t\ge0\right)\)

\(pt\Leftrightarrow\frac{1}{t-1}+\frac{1}{t}=\frac{9}{2\left(t+1\right)}\)

\(\Leftrightarrow\frac{2t\left(t+1\right)}{2t\left(t^2-1\right)}+\frac{2\left(t^2-1\right)}{2t\left(t^2-1\right)}-\frac{9t\left(t-1\right)}{2t\left(t^2-1\right)}=0\)

\(\Leftrightarrow-5t^2+11t-2=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2\end{cases}}\)

30 tháng 10 2016

Ta có x^4 + 4 = (x^2 + 2x + a)(x^2 - 2x + 4 - a) + 4ax - 8x + a^2 - 4a + 4; để chia hết thì phần dư phải bằng 0 hay

\(\hept{\begin{cases}4a-8=0\\a^2-4a+4=0\end{cases}}\)

=> a = 2

2 tháng 11 2016

thanks a 

31 tháng 7 2018

ĐK: x\(\ge\)2

\(E=\dfrac{\sqrt{x+2+2\sqrt{\left(x+2\right)\left(x-2\right)}+x-2}}{\sqrt{x^2-4}+x+2}\)

\(E=\dfrac{\sqrt{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}}{\sqrt{x^2-4}+x+2}\)

\(E=\dfrac{\left|\sqrt{x+2}+\sqrt{x-2}\right|}{\sqrt{x^2-4}+x+2}\)

\(E=\dfrac{\sqrt{x+2}+\sqrt{x-2}}{\left(x+2\right)+\sqrt{\left(x+2\right)\left(\sqrt{x-2}\right)}}\)

\(E=\dfrac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x+2}\left(\sqrt{x+2}+\sqrt{x-2}\right)}\)

\(E=\dfrac{1}{\sqrt{x+2}}\)

Thế x=2(\(\sqrt{3}+1\))=\(2\sqrt{3}+2\) vào E:

=>\(E=\dfrac{1}{\sqrt{2\sqrt{3}+4}}\)

=>\(E=\dfrac{1}{\sqrt{3+2\sqrt{3}+1}}=\dfrac{1}{\sqrt{\left(\sqrt{3}+1\right)^2}}=\dfrac{1}{\sqrt{3}+1}\)

8 tháng 10 2017

ĐKXĐ: \(x\ge0\) Phương trình trên tương đương :

\(5\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)-2\left(x+\dfrac{1}{x}\right)-4=0\)

Đặt \(\sqrt{x}+\dfrac{1}{\sqrt{x}}=t\left(t\ge0\right)\)\(\Rightarrow t^2=x+\dfrac{1}{x}+2\)

Vậy phương trình trở thành:

\(5t-2\left(t^2-2\right)-4=0\)\(\Leftrightarrow2t^2-5t=0\)\(\Leftrightarrow t\left(2t-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=\dfrac{5}{2}\end{matrix}\right.\)

*Với \(t=0\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=0\Leftrightarrow x=-1\left(loai\right)\)

*Với \(t=\dfrac{5}{2}\)\(\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=\dfrac{5}{2}\Leftrightarrow2x-5\sqrt{x}+2=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)Vậy phương trình có hau nghiệm phân biệt \(\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)

8 tháng 10 2017

Quy đồng rồi đặt ẩn \(\sqrt{x}=t\left(t\ge0\right)\) và giải pt bậc 4 như bình thường.

NV
22 tháng 6 2019

ĐKXĐ:...

a/ \(\Leftrightarrow\sqrt{x^2+4\sqrt{x^2-4}}=16-2x^2\)

Đặt \(\sqrt{x^2-4}=a\ge0\Rightarrow x^2=a^2+4\)

\(\Leftrightarrow\sqrt{a^2+4+4a}=16-2\left(a^2+4\right)\)

\(\Leftrightarrow2a^2+a+2-8=0\)

\(\Leftrightarrow2a^2+a-6=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-4}=\frac{3}{2}\Rightarrow x^2-4=\frac{9}{4}\)

b/

\(\Leftrightarrow\left(2x^2+1\right)\sqrt{2x^2+1}=2\left(2x^2+1\right)+2+3\sqrt{2x^2+1}\)

Đặt \(\sqrt{2x^2+1}=a>0\)

\(\Leftrightarrow a^3=2a^2+3a+2\)

\(\Leftrightarrow a^3-2x^2-3x-2=0\)

Nghiệm xấu, có lẽ bạn chép nhầm chỗ nào đó

NV
22 tháng 6 2019

Bài sửa bên trên rồi đó bạn