Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt x-2016=a
y-2017=b
z-2018=c
ta có\(\frac{1}{\sqrt{a}}-\frac{1}{a}+\frac{1}{\sqrt{b}}-\frac{1}{b}+\frac{1}{\sqrt{c}}-\frac{1}{c}=\frac{3}{4}\)
=>\(\left(\frac{1}{\sqrt{a}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{b}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{c}}-\frac{1}{2}\right)^2=0\)
=>\(a=b=c=4\)
còn lại tự lm nốt
\(x^2-2x+3=t\left(t\ge0\right)\)
\(pt\Leftrightarrow\frac{1}{t-1}+\frac{1}{t}=\frac{9}{2\left(t+1\right)}\)
\(\Leftrightarrow\frac{2t\left(t+1\right)}{2t\left(t^2-1\right)}+\frac{2\left(t^2-1\right)}{2t\left(t^2-1\right)}-\frac{9t\left(t-1\right)}{2t\left(t^2-1\right)}=0\)
\(\Leftrightarrow-5t^2+11t-2=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2\end{cases}}\)
Ta có x^4 + 4 = (x^2 + 2x + a)(x^2 - 2x + 4 - a) + 4ax - 8x + a^2 - 4a + 4; để chia hết thì phần dư phải bằng 0 hay
\(\hept{\begin{cases}4a-8=0\\a^2-4a+4=0\end{cases}}\)
=> a = 2
ĐK: x\(\ge\)2
\(E=\dfrac{\sqrt{x+2+2\sqrt{\left(x+2\right)\left(x-2\right)}+x-2}}{\sqrt{x^2-4}+x+2}\)
\(E=\dfrac{\sqrt{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}}{\sqrt{x^2-4}+x+2}\)
\(E=\dfrac{\left|\sqrt{x+2}+\sqrt{x-2}\right|}{\sqrt{x^2-4}+x+2}\)
\(E=\dfrac{\sqrt{x+2}+\sqrt{x-2}}{\left(x+2\right)+\sqrt{\left(x+2\right)\left(\sqrt{x-2}\right)}}\)
\(E=\dfrac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x+2}\left(\sqrt{x+2}+\sqrt{x-2}\right)}\)
\(E=\dfrac{1}{\sqrt{x+2}}\)
Thế x=2(\(\sqrt{3}+1\))=\(2\sqrt{3}+2\) vào E:
=>\(E=\dfrac{1}{\sqrt{2\sqrt{3}+4}}\)
=>\(E=\dfrac{1}{\sqrt{3+2\sqrt{3}+1}}=\dfrac{1}{\sqrt{\left(\sqrt{3}+1\right)^2}}=\dfrac{1}{\sqrt{3}+1}\)
ĐKXĐ: \(x\ge0\) Phương trình trên tương đương :
\(5\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)-2\left(x+\dfrac{1}{x}\right)-4=0\)
Đặt \(\sqrt{x}+\dfrac{1}{\sqrt{x}}=t\left(t\ge0\right)\)\(\Rightarrow t^2=x+\dfrac{1}{x}+2\)
Vậy phương trình trở thành:
\(5t-2\left(t^2-2\right)-4=0\)\(\Leftrightarrow2t^2-5t=0\)\(\Leftrightarrow t\left(2t-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=\dfrac{5}{2}\end{matrix}\right.\)
*Với \(t=0\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=0\Leftrightarrow x=-1\left(loai\right)\)
*Với \(t=\dfrac{5}{2}\)\(\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=\dfrac{5}{2}\Leftrightarrow2x-5\sqrt{x}+2=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)Vậy phương trình có hau nghiệm phân biệt \(\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)
ĐKXĐ:...
a/ \(\Leftrightarrow\sqrt{x^2+4\sqrt{x^2-4}}=16-2x^2\)
Đặt \(\sqrt{x^2-4}=a\ge0\Rightarrow x^2=a^2+4\)
\(\Leftrightarrow\sqrt{a^2+4+4a}=16-2\left(a^2+4\right)\)
\(\Leftrightarrow2a^2+a+2-8=0\)
\(\Leftrightarrow2a^2+a-6=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-4}=\frac{3}{2}\Rightarrow x^2-4=\frac{9}{4}\)
b/
\(\Leftrightarrow\left(2x^2+1\right)\sqrt{2x^2+1}=2\left(2x^2+1\right)+2+3\sqrt{2x^2+1}\)
Đặt \(\sqrt{2x^2+1}=a>0\)
\(\Leftrightarrow a^3=2a^2+3a+2\)
\(\Leftrightarrow a^3-2x^2-3x-2=0\)
Nghiệm xấu, có lẽ bạn chép nhầm chỗ nào đó