Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
R(x) = 2x2 + 3x - 1
- M(x) = -x3 + x2
x3 + x2 + 3x - 1
Vậy R(x) - M(x) = x3 + x2 + 3x - 1
Ta có: \(\hept{\begin{cases}\left|x+1\right|\ge0\\\left|x+3\right|\ge0\\\left|x+5\right|\ge0\end{cases}}\Rightarrow VT\ge0\)
\(\Leftrightarrow3x-4\ge\Leftrightarrow x\ge\frac{4}{3}\)
\(\Rightarrow pt\Leftrightarrow3x+9=3x-4\Leftrightarrow9=-4\)(vô lí)
Vậy pt vô nghiệm
\(\left||2x-3|-x+3\right|=4x-1\)(1)
*Nếu \(x\le3\)thì \(\left(1\right)\Leftrightarrow\left|2x-3\right|+3-x=4x-1\)
\(\Leftrightarrow\left|2x-3\right|=5x-4\)(2)
+) TH1: \(x\ge\frac{3}{2}\)thì \(\left(2\right)\Leftrightarrow2x-3=5x-4\)
\(\Leftrightarrow-3x=-1\Leftrightarrow x=\frac{1}{3}\left(L\right)\)
+) TH2: \(x< \frac{3}{2}\)thì \(\left(2\right)\Leftrightarrow3-2x=5x-4\)
\(\Leftrightarrow-7x=-7\Leftrightarrow x=1\left(TM\right)\)
*Nếu \(x>3\)thì \(\left(1\right)\Leftrightarrow\left|2x-3\right|-3+x=4x-1\)
\(\Leftrightarrow\left|2x-3\right|=3x+2\)(3)
+) TH1: \(x\ge\frac{3}{2}\)thì \(\left(3\right)\Leftrightarrow2x-3=3x+2\Leftrightarrow-x=5\Leftrightarrow x=-5\left(L\right)\)
+) TH2: \(x< \frac{3}{2}\)thì \(\left(3\right)\Leftrightarrow3-2x=3x+2\Leftrightarrow-5x=-1\Leftrightarrow x=\frac{1}{5}\left(L\right)\)
Vậy x = 1
a, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Leftrightarrow\left(x+1\right)\left(3x-5-3x+1\right)=x-4\Leftrightarrow-4\left(x+1\right)=x-4\)
\(\Leftrightarrow-4x-4=x-4\Leftrightarrow-4x-x=0\Leftrightarrow x=0\)
b, \(\left(x-2\right)\left(x+3\right)-\left(x+4\right)\left(x-7\right)=5-x\)
\(\Leftrightarrow x^2+x-6-x^2-3x+28=5-x\Leftrightarrow-2x+22=5-x\Leftrightarrow x=17\)
c, thiếu đề
d, \(3\left(x-7\right)\left(x+7\right)-\left(x-1\right)\left(3x+2\right)=13\)
\(\Leftrightarrow3x^2-147-3x^2+x+2=13\Leftrightarrow x=11+147=158\)
a.\(3x^2-2x-5-\left(3x^2+2x-1\right)=x-4\)
\(\Leftrightarrow-5x=0\Leftrightarrow x=0\)
b.\(x^2+x-6-\left(x^2-3x-28\right)=5-x\)
\(\Leftrightarrow5x=-17\Leftrightarrow x=-\frac{17}{5}\)
c.\(5\left(x^2-10x+21\right)-\left(5x^2-9x-2\right)=0\)
\(\Leftrightarrow-41x+107=0\Leftrightarrow x=\frac{107}{41}\)
d.\(3\left(x^2-49\right)-\left(3x^2-x-2\right)=13\Leftrightarrow x=158\)
Đăng ít một thôi bạn :v
a) 3x - (3 - 2x) = 0
3x - 3 + 2x = 0
5x - 3 = 0
5x = 0 + 3
5x = 3
x = 3/5
b) (x + 2).3 - 4x.3 = 0
3.(x + 2) - 12.x = 0
3[x + 2 - (4x)] = 0
x + 2 - 4 = 0
-3x + 2 = 0
-3x = 0 - 2
-3x = -2
x = 2/3
c) (x - 2)(x - 4)(1 - 7x) = 0
x - 2 = 0 hoặc x - 4 = 0 hoặc 1 - 7x = 0
x = 0 + 2 x = 0 + 4 -7x = 0 - 1
x = 2 x = 4 -7x = -1
x = 1/7
d) 4x2 - 1/4 = 0
4x2 = 0 + 1/4
4x2 = 1/4
x2 = 1/4 : 4
x2 = 1/16
x2 = (1/4)2
x = 1/4 hoặc x = -1/4
e) -3x2 + 48 = 0
3x2 - 48 = 0
3x2 = 0 + 48
3x2 = 48
x2 = 48 : 3
x2 = 16
x2 = 42
x = 4 hoặc x = -4
g) 3(1/2 - 1/3x)3 - 1/9 = 0
3(1/2 - x/3)3 - 1/9 = 0
3(1/2 - x/3)3 = 0 + 1/9
3(1/2 - x/3)3 = 1/9
(1/2 - x/3)3 = 1/9 : 3
(1/2 - x/3)3 = 1/27
(1/2 - x/3)3 = (1/3)3
1/2 - x/3 = 1/3
-x/3 = 1/3 - 1/2
-x/3 = -1/6
-x = -1/6.3
-x = -3/6 = -1/2
x = -1/2
m) 4x3 + 5x4 = 0
x3(4 + 5x) = 0
x = 0 hoặc 4 + 5x = 0
x = 0 5x = 0 - 4
5x = -4
x = -4/5
h) -x3 + 1/64x = 0
-x3 + x/64 = 0
x/64 - x3 = 0
x(1/64 - x3) = 0
x = 0 hoặc 1/64 - x2 = 0
x = 0 -x2 = 0 - 1/64
-x2 = -1/64
x2 = 1/64 = -+1/8
k) (x2 + 1)2 + 3x(x2 + 1) + 2 = 0
x4 + 2x2 + 1 + 3x3 + 3x + 2 = 0
x4 + 2x2 + 3 + 3x3 + 3x = 0
(x3 + 2x2 + 3)(x + 1) = 0
Mà x3 + 2x2 + 3 # 0 nên
x + 1 = 0
x = -1
c) \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)\)
Cho \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)=0\)
⇔ \(\left[{}\begin{matrix}x-2=0\\x-4=0\\1-7x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0+2\\x=0+4\\7x=1-0=1\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=2\\x=4\\x=1:7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=2\\x=4\\x=\frac{1}{7}\end{matrix}\right.\)
Vậy \(x=2;x=4\) và \(x=\frac{1}{7}\) đều là nghiệm của đa thức \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)\)
d) \(4x^2-\frac{1}{4}\)
Cho \(4x^2-\frac{1}{4}=0\)
⇔ \(4x^2=0+\frac{1}{4}\)
⇔ \(4x^2=\frac{1}{4}\)
⇔ \(x^2=\frac{1}{4}:4\)
⇔ \(x^2=\frac{1}{16}\)
=> \(\left[{}\begin{matrix}x=\frac{1}{4}\\x=-\frac{1}{4}\end{matrix}\right.\)
Vậy \(x=\frac{1}{4}\) và \(x=-\frac{1}{4}\) đều là nghiệm của đa thức \(4x^2-\frac{1}{4}.\)
e) \(-3x^2+48\)
Cho \(-3x^2+48=0\)
⇔ \(-3x^2=0-48\)
⇔ \(-3x^2=-48\)
⇔ \(x^2=\left(-48\right):\left(-3\right)\)
⇔ \(x^2=16\)
=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
Vậy \(x=4\) và \(x=-4\) đều là nghiệm của đa thức \(-3x^2+48.\)
Mình chỉ làm 3 câu thôi nhé.
Chúc bạn học tốt!
1) 2x.(5x-3x)+2x.(3x-5)-3.(x-7)=3
10x-6x^2+6x^2-10x-3x+21=3
-3x =-18
suy ra x=6
2) 3x.(x+1) -2x.(x+2)=-1-x
3x^2 +3x-2x^2-4x =-1-x
x^2 =-1
suy ra không có giá trị nào của x thỏa mãn đề bài
3) 2x^2 +3.(x^2-1)=5x(x+1)
2x^2 +3x^2-3 =5x^2+5x
-5x =3
x=-3/5
giải rồi đấy
nhớ tích đúng nha :)
a: \(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=x^3+x^2+x+1\)
b: \(P\left(-1\right)=2\cdot\left(-1\right)+1-1+2=0\)
\(Q\left(-1\right)=-1+1-1+1=0\)
Do đó: x=-1 là nghiệm chung của P(x), Q(x)
\(P\left(x\right)=2x^3-2x+x^2+3x+2\)
\(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q\left(x\right)=x^3+x^2+x+1\)
__________________________________________________
\(P\left(-1\right)=2.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+2\)
\(P\left(-1\right)=0\)
\(Q\left(-1\right)=\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1\)
\(Q\left(-1\right)=0\)
Vậy x = -1 là nghiệm của P(x),Q(x)
X=4
e mới lớp 6 thôi
ta có \(\left|x+3\right|>0\)
\(\left|x+1\right|>0\)
do đó 3x>0 \(\Rightarrow\)x>0
Ta có x+3+x+1=3x
2x+4=3x
x=4