Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(3x-1)2+2(3x-1)(2x+1)2(2x+1)=48x^4+56x^3+21x^2-12x-1 cái này tra google
b)(x2+1)(x-3)-(x-3)(x2+3x+9)=(x2+1)(x-3)-(x-3)(x+3)2=(x-3)[(x2+1)-(x+3)2 ]
c)(2x+3)2+(2x+5)2-2(2x+3)(2x+5)=(2x+3)2+(2x+5)2-(2x+3)(2x+5)-(2x+3)(2x+5)=(2x+3)(2x+3-2x+5)+(2x+5)(2x+5-2x+3)
=8(2x+3)+8(2x+5)=8(2x+3+2x+5)
=8(4x+8)
d)(x-3)(x+3)-(x-3)2 =(x-3)(x+3)-(x-3)(x-3)=(x-3)(x+3-x-3)=0
e)(2x+1)2+2(4x2-1)+(2x-1)2 =(2x+1)2+2[(2x)2 -1]+(2x-1)2 =(2x+1)(2x+1+2x-1)+(2x-1)(2x+1+2x-1)=4x(2x+1)+4x(2x-1)
=4x(2x+1+2x-1)=16x2
f)(x2-1)(x+2)-(x-2)(x2+2x+4)= (x2-1)(x+2)-(x-2)(x+2)2 =(x2-1)(x+2)-(x2-22)(x+2)=(x+2)(x2-1-x2-22) mình đoán câu f khai triển ra thế này nhưng kq không giống nhau nên chắc bạn phải tự làm rồi
\(a,\) \(3a^3.\left(x^2-1\right)^4:3a^3.\left(x^2-1\right)^3=15\)
\(\frac{3a^3.\left(x^2-1\right)^4}{3a^3.\left(x^2-1\right)^3}=15\\ x^2-1=15\\ x^2=16\\ x=4\)
\(b,\) \(x^3.\left(2x-1\right)^{m+2}:x^3.\left(2x-1\right)^{m-1}=3^5:3^2\\ \frac{x^3.\left(2x-1\right)^{m+2}}{x^3\left(2x-1\right)^{m-1}}=3^{5-2}\\ \left(2x-1\right)^3=3^3\)
\(2x-1=3\\ 2x=4\\ x=2\)
a: \(=4x^2+20x+25+4x^2-20x+25-\left(4x^2-1\right)\)
\(=8x^2+50-4x^2+1=4x^2+51\)
b: \(=8a^3+12a^2b+6ab^2+b^3+8a^3-12a^2b+6ab^2-b^3-16a^3\)
\(=12ab^2\)
c: \(\left(2x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)-7x^3-2x\)
\(=\left(2x-1\right)^3-x^3+8-7x^3-2x\)
\(=8x^3-12x^2+6x-1-8x^3-2x+8\)
\(=-12x^2+4x+7\)
d: \(\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)
\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)
\(=x^2+2x+1-x^2+2x-1-3x^2+3\)
\(=-3x^2+4x+3\)
a ) \(\left(2x-3\right)^3-x\left(2x-1\right)^2\)
\(=\left(2x\right)^3-3.\left(2x\right)^2.3+3.2x.3^2-3^3-x.\left(2x\right)^2-2.2x.1+1^2\)
\(=8x^3-3.4x^2.3+3.2x.9-27-x.4x^2-2.2x.x+1\)
\(=8x^3-36x^2+54x-27-4x^3-4x^2+1\)
\(=4x^3-40x^2+54x-26\)
a ) (2x−3)^3−x(2x−1)^2
=(2x)^3−3.(2x)^2.3+3.2x.3^2−33^−x.(2x)^2−2.2x.1+1^2
=8x^3−3.4x^2.3+3.2x.9−27−x.4x^2−2.2x.x+1
=8x^3−36x^2+54x−27−4x^3−4x2+1
=4x^3−40x^2+54x−26
\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)
\(=2x^3+16x^2-5x\)
\(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)
\(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)
b: Đặt x=a; x-1=b
Theo đề, ta có phương trình: \(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
=>x(x-1)(2x-1)=0
hay \(x\in\left\{0;1;\dfrac{1}{2}\right\}\)
c: Đặt x+1=a; x-2=b
Theo đề, ta có phương trình:
\(a^3+b^3=\left(a+b\right)^3\)
=>3ab(a+b)=0
=>(x+1)(x-2)(2x-1)=0
hay \(x\in\left\{-1;2;\dfrac{1}{2}\right\}\)
\(x^3+\left(x-1\right)^3=\left(x+x-1\right)^3-3\left(x+x-1\right)x\left(x-1\right)\)
\(=\left(2x-1\right)^3-3\left(2x-1\right)x\left(x-1\right)\)
Do đó: \(x^3+\left(x-1\right)^3=\left(2x-1\right)^3\)
<=> \(\left(2x-1\right)^3-3\left(2x-1\right)x\left(x-1\right)=\left(2x-1\right)^3\)
<=> (2x - 1) x (x -1 ) = 0
<=> 2x - 1 = 0 hoặc x = 0 hoặc x - 1 = 0
<=> x = 1/2 hoặc x = 0 hoặc x = 1
Kết luận: ...
Bài làm
x3 + ( x - 1 )3 = ( 2x - 1 )3
<=> x3 + x3 - 3x2 + 3x - 1 = 8x3 - 24x2 + 6x - 1
<=> x3 + x3 - 8x3 - 3x2 + 24x2 + 3x - 6x - 1 + 1 = 0
<=> -6x3 + 21x2 - 3x = 0
<=> -x( 6x2 - 21x + 3 ) = 0