K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

=xy(x2+2xy+y2-49)

=xy[(x+y)2-72)=xy(x+y-7)(x+y+7)

4 tháng 10 2016

k ) \(125x^3-1\)

     \(=\left(5x\right)^3-1\)

     \(=\left(5x-1\right)\left[\left(5x\right)^2+5x.1+1^2\right]\)

     \(=\left(5x-1\right)\left(25x^2+5x+1\right)\)

m ) \(x^6-y^3=\left(x^2\right)^3-y^3=\left(x^2-y\right).\left[\left(x^2\right)^2+x^2.y+y^2\right]=\left(x^2-y\right).\left(x^4+x^2y+y^2\right)\)

n ) \(a^4-2a^2+1\)

\(=\left(a^2\right)^2-2.a^2.1+1^2=\left(a^2-1\right)^2\)

i ) \(a^3+6a^2+12a+8\)

\(=\left(a+2\right)^3\)

4 tháng 10 2016

k) \(125x^3-1=\left(5x\right)^3-1=\left(5x-1\right)\left(25x^2+5x+1\right)\)

m) \(x^6-y^3=\left(x^2\right)^3-y^3=\left(x^2-y\right)\left(x^4+x^2y+y^2\right)\)

n) \(a^4-2a^2+1=\left(a^2-1\right)^2=\left(a^2-1\right)\left(a^2-1\right)=\left(a-1\right)\left(a+1\right)\left(a-1\right)\left(a+1\right)\)

i) \(a^3+6a^2+12a+8=\left(a+2\right)^2\)

19 tháng 10 2020

a) Đặt t = x2

bthuc <=> t2 - 7t + 16 

Từ đây ta không thể phân tích được :)

b) x3 - 2x2 + 5x - 4 

= x3 - x2 - x2 + x + 4x - 4

= x2( x - 1 ) - x( x - 1 ) + 4( x - 1 )

= ( x - 1 )( x2 - x + 4 )

c) x3 - 2x2 + x - 3 ( phân tích hổng ra :)) )

d) 3x3 - 4x2 + 12x - 4 ( phân tích hổng ra p2 :)) )

e) 6x3 + x2 + x + 1

= 6x3 + 3x2 - 2x2 - x + 2x + 1

= 3x2( 2x + 1 ) - x( 2x - 1 ) + ( 2x + 1 )

= ( 2x + 1 )( 3x2 - x + 1 )

f) 4x3 + 6x2 + 4x + 1

= 4x3 + 2x2 + 4x2 + 2x + 2x + 1

= 2x2( 2x + 1 ) + 2x( 2x + 1 ) + ( 2x + 1 )

= ( 2x + 1 )( 2x2 + 2x + 1 )

19 tháng 10 2020

:) Quỳnh đặt ĐK đi nè :3 \(x^2=t\left(t\ge0\right)\)

2 tháng 10 2016

Đề sai nhé .Sửu lại

\(x^2-4x^2y^2+4+4x\)

\(=\left(x^2+4x+4\right)-4x^2y^2\)

\(=\left(x+2\right)^2-\left(2xy\right)^2\)

\(=\left(x+2+2xy\right)\left(x+2-2xy\right)\)

 

 

16 tháng 8 2016

\(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)=x^2y-xy^2+y^2z-yz^2+z^2z-zx^2=x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(z-y\right)\)

\(x^2\left(y-z\right)-y^2\left(x-z\right)-z^2\left(y-z\right)=\left(y-z\right)\left(x-z\right)\left(x+z\right)-y^2\left(x-z\right)=\left(x-z\right)\left(xy-yz-zx-z^2-y^2\right)\)

t cx k bt có đúng hay k đâu nha, nhớ xem kĩ lại

17 tháng 8 2016

Cảm ơn nhiều nhé =))

4 tháng 8 2016

a)x^2.16-4xy+4y^2

<=>16.x^2-2x2y+(2y)^2

<=>16(x-2y)^2

b)x^5-x^4+x^3-x^2

<=>(x^5-x^4)+(x^3-x^2)

<=>x^4(x-1)+x^2(x-1)

<=>(x-1)(x^4+x^2)

c)x^5+x^3-x^2-1

<=>(x^5+x^3)-(x^2+1)

<=>x^3(x^2+1)-(x^2+1)

<=>(x^2+1)(x^3-1)

d)x^4-3x^3-x+3

<=>(x^4-3x^3)-(x-3)

<=>x^3(x-3)-(x_3)

<=>(x-3)(x^3-1)

4 tháng 8 2016

\(a,x^2.16-4xy+4y^2\)
\(=16.x^2-4xy+4y^2\)
\(=16.\left[x^2-4xy+\left(2y\right)^2\right]\)
\(=16.\left(x-2y\right)^2\)
\(b,x^5-x^4+x^3-x^2\)
\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)
\(=\left(x-1\right)\left(x^4+x^2\right)\)
\(=x^2\left(x-1\right)\left(x^2+1\right)\)
\(c,x^5+x^3-x^2-1\)
\(=x^3\left(x^2+1\right)-\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^3-1\right)\)
\(=\left(x^2+1\right)\left(x-1\right)\left(x^2+x+1\right)\)
\(d,x^4-3x^3-x+3\)
\(=x^3\left(x-3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x^3-1\right)\)
\(=\left(x-3\right)\left(x-1\right)\left(x^2+x+1\right)\)

 

DD
30 tháng 11 2021

\(x^2\left(x+1\right)-\left(x+1\right)\left(3x+1\right)+7x-x^2\)

\(=x^3+x^2-3x^2-4x-1+7x-x^2\)

\(=x^3-3x^2+3x-1\)

\(=\left(x-1\right)^3\)

2 tháng 10 2016

a) \(4a^3b^3c^2x+12a^3b^4c^2-16a^4b^5cx\)

\(=4a^3b^3c\left(cx+3bc-4ab^2x\right)\)

b) \(\left(b-2c\right)\left(a-b\right)-\left(a+b\right)\left(2c-b\right)\)

\(=\left(b-2c\right)\left(a-b+a+b\right)=2a\left(b-2c\right)\)

c) \(3a\left(a+5\right)-2\left(5+a\right)=\left(a+5\right)\left(3a-2\right)\)

d) \(\left(x+1\right)^2-3\left(x+1\right)=\left(x+1\right)\left(x+1-3\right)\)