Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
A B C D E H 1 2
a) Xét hai tam giác ABD và EBD có:
AB = EB (gt)
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
BD: cạnh chung
Vậy: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)
Suy ra: \(\widehat{BAD}=\widehat{BED}\) (hai góc tương ứng)
Mà \(\widehat{BAD}=90^o\)
Do đó \(\widehat{BED}=90^o\) hay DE \(\perp\) BE.
b) Vì AB = EB (gt)
\(\Rightarrow\) \(\Delta ABE\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thởi là đường trung trực
Do đó: BD là đường trung trực của AE. (1)
c) Xét hai tam giác vuông ADH và EDC có:
DA = DE (\(\Delta ABD=\Delta EBD\))
\(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)
Vậy: \(\Delta ADH=\Delta EDC\left(cgv-gn\right)\)
Suy ra: AH = EC (hai cạnh tương ứng)
Ta có: BH = AB + AH
BC = EB + EC
Mà AB = EB (gt)
AH = EC (cmt)
\(\Rightarrow\) BH = BC
\(\Rightarrow\) \(\Delta BHC\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thời là đường cao của HC hay
BD \(\perp\) HC (2)
Từ (1) và (2) suy ra: AE // HC (đpcm).
C A B D K I
a)A +B + C =180độ
=>90 độ + 60 độ + C =180 độ
=> C =30 độ
Mà 30 độ < 60 độ <90 độ
=>C < B < A
=> AB < AC < BC
b)Xét tam giác vuông ABD(vuông ở A) và tam giác vuong KDB(vuông ở K)
Cạnh BK chung
ABD = DBK ( vì BK là phân giác góc B)
=> Tam giác ABD = Tam giác KDB(cạnh huyền - góc nhọn)
c) Vì BK là phân giác góc B => KBD = 1/2 B = 1/2 60 độ =30 độ
Mà C =30 độ
=>KBD = C = 30 độ
=> Tam giác BDC cân ở D
Vì tam giác ABD = Tam giác KDB nên BA=BK(2 cạnh tương ứng) (1)
Mà góc C=30 độ,A =90 độ
Áp dụng tính chất góc đối diện với cạnh 30 độ =1/2 cạnh huyền => AB =1/2 BC (2)
Từ (1) và (2) => BA=BK=1/2 BC
d)BA = BK = 1/2 BC => BC= 3 x 2=6
Xét tam giác ADI và tam giác KDC :
ADI = KDC(2 góc đối đình)
AD=DK( 2 cạnh tương ứng của tam giác ABD và tam giác KBD)
DAI=DKC ( 2 góc kề bù với 2 góc 90 độ)
=> Tam giác ADI = Tam giác KDC( góc - cạnh - góc)
=>AI = KC(2 cạnh tương ứng)
Mà KC=1/2 BC =>AI=CK=3 cm
Những chỗ có gạch trên đầu là kí hiệu của góc nhé(vì ở đây ko thấy kí hiệu mũ nên phải viết gạch ngang)
Nếu có chỗ nào không hiểu bạn cứ viết đi,mình giải thích cho
-Thêm điều kiện góc C = góc F để tam giác ABC = tam giác DEF (g-c-g)
-Thêm điều kiện BC = EF để tam giác ABC = tam giác DEF ( c.huyền - c.g.vuông )
- Thêm điều kiện AB = DE để tam giác ABC = tam giác DEF ( c-g-c)
2. Xét tam giác ABH và tam giác ACK có :
AB = AC (tam giác ABC cân tại A)
Góc A chung
góc AKC = góc AHB ( = 90 độ )
=>Tam giác AKC và tam giác ABH (c.huyền-g.nhọn)
=>AH = AK ( cặp cạnh t/ứng )
Hình:
ABCHEF
Giải:
Theo hình vẽ và dữ kiện đề bài, ta liệt kê các góc nhọn:
\(\widehat{ABC};\widehat{ACB};\widehat{BHF};\widehat{FHA};\widehat{FAH};\widehat{AHE};\widehat{HAE};\widehat{EHC}\)
=> Có 8 góc nhọn
Ta có:
\(\left\{{}\begin{matrix}\widehat{FHE}=90^0\\\widehat{HEA}=90^0\\\widehat{FAE}=90^0\end{matrix}\right.\left(gt\right)\)
Suy ra tứ giác AFHE là hình chữ nhật
Từ đó, suy ra:
\(\left\{{}\begin{matrix}FH//AE\left(FH//AC\right)\\HE//AF\left(HE//AB\right)\end{matrix}\right.\)
* Xét trường hợp FH // AE ( FH // AC), có:
- \(\widehat{FHA}=\widehat{HAE}\) (Hai góc so le trong)
- \(\widehat{BHF}=\widehat{ACB}\) (Hai góc đồng vị)
* Xét trường hợp HE // AF ( HE // AB), có:
- \(\widehat{AHE}=\widehat{FAH}\) (Hai góc so le trong)
- \(\widehat{EHC}=\widehat{ABC}\) (Hai góc đồng vị)
Ta thấy có đủ 8 góc nhọn và có 4 cặp góc nhọn bằng nhau
Vậy ...
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
mk k biet xin loi ban nha!!!!!
mk k biet xin loi ban nha!!!!!
mk k biet xin loi ban nha!!!!!
mk k biet xin loi ban nha!!!!!