Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[3\left(x-1\right)^2+6\right]\left(3+6\right)\ge\left[3\left(x-1\right)+6\right]^2\)
\(\Leftrightarrow3x^2-6x+9\ge x+5\)
\(\Rightarrow A\ge x^4-8x^2+2024=\left(x^2-4\right)^2+2008\ge2008\)
Dấu "=" xảy ra khi \(x=2\)
Có phát hiện ra lỗi sai trong bài làm trên ko? :D
\(=>x^3=(\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)})^3\)
\(x^3=2\left(\sqrt{3}+1\right)-3.\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]^2.\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)
+\(3\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]^2\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]-2\left(\sqrt{3}-1\right)\)
\(x^3=\)
\(4-3\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)
\(x^3=4-3.\left[\sqrt[3]{4\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right].\)\(x\)
\(x^3=4-3\left[\sqrt[3]{4\left(3-1\right)}\right].x\)
\(x^3=4-3.2x\)
\(x^3=4-6x\)
thay \(x^3=4-6x\) vào A=>\(A=\left(4-6x+6x-5\right)^{2009}=\left(-1\right)^{2009}=-1\)
x-4-√x-2=0(x\(\ge\)2,x-4\(\ge\)\(\sqrt{ }\)x-2)
<=>x-4=√x-2
<=>(x-4)^2=x-2
<=>x^2-8x+16=x-2
<=>x^2-8x-x+16+2=0
<=>x^2-9x+18=0
có △=(-9)^2-4.18=9>0
=>x1=(9+√9)/2=6(thỏa mãn)
x2=(9-√9)/2=3(loại)(vì 3-4=-1,-1<1)
=>x=6
Bài 1:
a)\(Q=2x-\sqrt{x^2+2x+1}=2x-\sqrt{\left(x+1\right)^2}=2x-\left|x+1\right|\)
b)Tại x=7 thay vào Q ta được:
\(Q=2.7-\left|7+1\right|=14-8=6\)
Bài 2:
\(\sqrt{x^2-6x}+7x=13\)\(\Leftrightarrow\sqrt{x^2-6x}=13-7x\)
\(\Leftrightarrow\left\{{}\begin{matrix}13-7x\ge0\\x^2-6x=\left(13-7x\right)^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{13}{7}\\0=48x^2-85x+169\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{13}{7}\\\Delta=\left(-85\right)^2-4.48.169=-25223< 0\end{matrix}\right.\)
\(\Rightarrow x\in\varnothing\)
Vậy pt vô nghiệm.
a/
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x-1}=a\\\sqrt[3]{27-14x}=b\end{matrix}\right.\) ta được hệ:
\(\left\{{}\begin{matrix}2a+b=1\\14a^3+b^3=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=1-2a\\14a^3+b^3=13\end{matrix}\right.\)
\(\Rightarrow14a^3+\left(1-2a\right)^3=13\)
\(\Leftrightarrow a^3+2a^2-a-2=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+1\right)\left(a+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\\x-1=-8\end{matrix}\right.\) \(\Leftrightarrow...\)
b/ ĐKXĐ: ...
\(VT=\sqrt{x-2}+\sqrt{4-x}\le\sqrt{2\left(x-2+4-x\right)}=2\)
\(VP=\left(x-3\right)^2+2\ge2\)
Đẳng thức xảy ra khi và chỉ khi \(x=3\)
Có : \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}-2\sqrt{y}=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1\right)=0\)
\(\Leftrightarrow\sqrt{x}=2\sqrt{y}\) (Do \(\sqrt{x}+\sqrt{y}+1>0,\forall x;y>0\))
\(\Leftrightarrow x=4y\)
Khi đó \(P=\dfrac{7y}{\left(2\sqrt{y}+3\sqrt{y}\right).\left(\sqrt{x}+2\sqrt{y}\right)}\)
\(=\dfrac{7y}{5\sqrt{y}.4\sqrt{y}}=\dfrac{7}{20}\)
ĐKXĐ: \(x\ge-2\)
\(\Leftrightarrow x^3+3x\left(x+2\right)-4\left(x+2\right)\sqrt{x+2}=0\)
Đặt \(\sqrt{x+2}=y\ge0\) pt trở thành:
\(x^3+3xy^2-4y^3=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+4y^2\right)=0\)
\(\Leftrightarrow x=y\Leftrightarrow\sqrt{x+2}=x\) (\(x\ge0\))
\(\Leftrightarrow x^2=x+2\Leftrightarrow x=2\)
\(ĐKXĐ:x\ge-2\)
\(\Leftrightarrow x^3+3x^2+6x-4x\sqrt{x+2}-8\sqrt{x+2}=0\Leftrightarrow4x^2-4x\sqrt{x+2}+8x-8\sqrt{x+2}+x^3-x\left(x+2\right)=0\Leftrightarrow4x\left(x-\sqrt{x+2}\right)+8\left(x-\sqrt{x+2}\right)+x\left(x-\sqrt{x+2}\right)\left(x+\sqrt{x+2}\right)=0\)\(\Leftrightarrow\left(x-\sqrt{x+2}\right)\left(x^2+x\sqrt{x+2}+4x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{x+2}=0\left(1\right)\\x^2+x\sqrt{x+2}+4x+8=0\left(2\right)\end{matrix}\right.\) Từ (1) \(\Rightarrow x=\sqrt{x+2}\left(x\ge0\right)\Rightarrow x^2=x+2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-1\left(L\right)\end{matrix}\right.\) Từ (2) \(\Rightarrow x^2+x\sqrt{x+2}+4x+8\ge\left(-2\right)^2+\left(-2\right)\sqrt{-2+2}+4\left(-2\right)+8=4>0\) \(\Rightarrow\) ko có x
vậy...