Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow5x^2+4x-1-2x^2+12x-18=3x^2+5x-2-x^2-8x-16+x^2-x\)
\(\Leftrightarrow3x^2+16x-19=3x^2-4x-18\)
=>20x=1
hay x=1/20
2: \(\Leftrightarrow5x^2-20x-41=x^2-10x+25+4x^2+4x+1-\left(x^2-2x\right)+\left(x-1\right)^2\)
\(\Leftrightarrow5x^2-20x-41=4x^2-4x+26+x^2-2x+1\)
\(\Leftrightarrow-20x-41=-6x+27\)
=>-14x=68
hay x=-34/7
b. sửa đề
\(6x^4+25x^3+12x-25x^2+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy........
Bài 1 : Giải phương trình
a) (x + 3)4 + (x + 5)4 = 16
Đặt : x + 3 = t
=> x + 5 = x + 3 + 2 = t + 2
Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :
t4 + (t + 2)4 = 16
<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16
<=> 2(t4 + 4t3 + 12t2 + 16t) = 0
<=> t4 + 4t3 + 12t2 + 16t = 0
<=> (t + 2) . t . (t2 + 2y + 4) = 0
TH1 : t = 0
TH2 : t + 2 = 0 <=> t = -2
TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)
Nên t = 0 hoặc t = -2
hay x + 3 = -2 hoặc x + 3 = 0
<=> x = -5 hoặc x = -3
\(S=\left\{-5;-3\right\}\)
b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0
<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0
<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0
<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0
<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0
\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)
<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0
<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0
TH1 : x + 2 = 0 <=> x = -2
TH2 : x + 3 = 0 <=> x = -3
TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)
TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)
\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)
\(\left(x+3\right)^4+\left(x+5\right)^4=2\)
Đặt \(x+4=a\), phương trình trở thành:
\(\left(a-1\right)^4+\left(a+1\right)^4=2\)
\(\Leftrightarrow a^4-4a^3+6a^2-4a+1+a^4+4a^3+6a^2+4a+1=2\)
\(\Leftrightarrow2a^4+12a^2+2=2\)
\(\Leftrightarrow2a^2\left(a^2+6\right)=0\)
\(\Leftrightarrow a^2\left(a^2+6\right)=0\)
\(\Leftrightarrow\left(x+4\right)^2\left[\left(x+4\right)^2+6\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+4\right)^2=0\\\left(x+4\right)^2+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+4=0\\\left(x+4\right)^2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\\left(x+4\right)^2=-6\left(vn\right)\end{cases}}\)(vn : vô nghiệm).
Vậy phương trình có nghiệm duy nhất : \(x=-4\)
Đặt t = x + 4
pt <=> ( t - 1 )4 + ( t + 1 )4 = 2 ( khai triển giống bạn Phạm Thành Đông nhé, mình k làm lại )
<=> 2t4 + 12t2 + 2 = 2
<=> 2t4 + 12t2 = 0
<=> t4 + 6t2 = 0
<=> t2( t2 + 6 ) = 0
<=> ( x + 4 )2[ ( x + 4 )2 + 6 ] = 0
Vì ( x + 4 )2 + 6 ≥ 6 > 0 ∀ x
nên pt <=> ( x + 4 )2 = 0 <=> x = -4
Vậy ....