K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2022

\(=x\left(x^2+4x+4\right)< 0\\ x\left(x+2\right)^2< 0\\ TH1:x< 0\\ TH2:x+2< 0\\ x< -2\)

17 tháng 8 2022

\(x\left(x^2+4x+4\right)=x\left(x+2\right)^2< 0\Rightarrow x< 0\)vì (x+2)^2 >= 0 

30 tháng 5 2017

\(3\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)=0\)

\(\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow\left(x^2-3x\right)+\left(-2x+6\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

30 tháng 5 2017

xin lỗi toán lớp 8 thì mk chịu

24 tháng 3 2017

từ trên ta có (x+2)/13+(2x+45)/15-(3x+8)/37-(4x+69)/9=0

(x+2)/13+1+(2x+45)/15-1-(3x+8)/37-1-(4x+69)/9+1=0

(x+15)/13+(2x+30)/15-((3x+8)/37+1)-((4x+69)/9-1)=0

(x+15)/13+2(x+15)/15-3(x+15)/37-4(x+15)/9=0

(x+15)(1/13+2/15-3/37-4/9)=0

suy ra x+15=0

x=-15

26 tháng 11 2020

\(\frac{x+2}{13}+\frac{2x+45}{15}=\frac{3x+8}{37}+\frac{4x+69}{9}\)

<=> \(\left(\frac{x+2}{13}+1\right)+\left(\frac{2x+45}{15}-1\right)=\left(\frac{3x+8}{37}+1\right)+\left(\frac{4x+69}{9}-1\right)\)

<=> \(\frac{x+2+13}{13}+\frac{2x+45-15}{15}=\frac{3x+8+37}{37}+\frac{4x+69-9}{9}\)

<=> \(\frac{x+15}{13}+\frac{2\left(x+15\right)}{13}=\frac{3\left(x+15\right)}{37}+\frac{4\left(x+15\right)}{9}\)

<=> \(\frac{x+15}{13}+\frac{2\left(x+15\right)}{13}-\frac{3\left(x+15\right)}{37}-\frac{4\left(x+15\right)}{9}=0\)

<=> \(\left(x+15\right)\left(\frac{1}{13}+\frac{2}{13}-\frac{3}{37}-\frac{4}{9}\right)=0\)

Vì \(\frac{1}{13}+\frac{2}{13}-\frac{3}{37}-\frac{4}{9}\ne0\)

<=> x + 15 = 0

<=> x = -15

2 tháng 3 2019

\(\frac{2x-1}{x}+\frac{3-x}{4}=2\)

\(ĐKXĐ:x\ne0\)

\(MTC:4x\)

\(\frac{4\left(2x-1\right)}{4x}+\frac{x\left(3-x\right)}{4x}=\frac{8x}{4x}\)

\(\Rightarrow4\left(2x-1\right)+x\left(x-3\right)=8x\)

\(\Leftrightarrow8x-4+x^2-3x=8x\)

\(\Leftrightarrow8x-4+x^2-3x-8x=0\)

\(\Leftrightarrow x^2-3x-4=0\)

\(\Leftrightarrow x^2-4x+x-4=0\)

\(\Leftrightarrow\left(x^2-4x\right)+\left(x-4\right)=0\)

\(\Leftrightarrow x\left(x-4\right)+\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\)

Hoặc\(\hept{\begin{cases}x-4=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(N\right)\\x=-1\left(N\right)\end{cases}}}\)

Vậy tập nghiệp của pt là \(S=\left\{-1;4\right\}\)

17 tháng 11 2023

\(\dfrac{4x+2}{4x-2}+\dfrac{3-6x}{6x-6}\left(dkxd:x\ne\dfrac{1}{2};x\ne1\right)\)

\(=\dfrac{2\left(2x+1\right)}{2\left(2x-1\right)}+\dfrac{3\left(1-2x\right)}{6\left(x-1\right)}\)

\(=\dfrac{2x+1}{2x-1}+\dfrac{1-2x}{2\left(x-1\right)}\)

\(=\dfrac{2x+1}{2x-1}+\dfrac{1-2x}{2x-2}\)

\(=\dfrac{\left(2x+1\right)\left(2x-2\right)}{\left(2x-1\right)\left(2x-2\right)}+\dfrac{\left(1-2x\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{4x^2-2x-2}{\left(2x-1\right)\left(2x-2\right)}+\dfrac{-4x^2+4x-1}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{4x^2-2x-2-4x^2+4x-1}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{2x-3}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{2x-3}{4x^2-6x+2}\)

15 tháng 2 2020

\(a.\left(3-x\right)^2-12+4x=0\)

\(\Rightarrow\left(3-x\right)^2-4.\left(3-x\right)=0\)

\(\Rightarrow\left(3-x\right)\left(-x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3-x=0\\-x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

\(b.\left(4x-5\right)^2-2.\left(16x^2-25\right)=0\)

\(\Rightarrow\left(4x-5\right)^2-2.\left(4x+5\right).\left(4x-5\right)=0\)

\(\Rightarrow\left(4x-5\right)\left(4x-5-8x-10\right)=0\)

\(\Rightarrow\left(4x-5\right)\left(-4x-15\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4x-5=0\\-4x-15=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}\)

15 tháng 2 2020

ths bn nh 

15 tháng 7 2017

a,=(x\(^2\)-6x+9)+10-9

=(x-3)\(^2\)+1

Mà(x-3)\(^2\)\(\ge\)0

nên (x-3)\(^2\)+1>0

b,=  -(-4x+x\(^2\))-5

=    -(4-4x+x\(^2\))-5+4

=     -(2-x)\(^2\)-1

Mà  -(2-x)\(^2\)\(\le\)0

nên -(2-x)\(^2\)-1<   0

16 tháng 7 2017

Võ Hoàng Tiên: Cảm ơn pạn nhiều lắm =)) nek :3 Hí Hí :)  Thankssssss 

1 tháng 1 2019

ta có: H = 4x - x^2 = - (x^2 -4x) = -(x^2-4x+4-4) = -(x-2)^2 + 4

mà \(-\left(x-2\right)^2+4\le4\)

Để H có GTLN

=> -(x-2)^2 + 4 = 4

-(x-2)^2 = 0

=> x - 2 = 0 => x = 2

KL:...

Ta có: \(H=4x-x^2\)

\(\Rightarrow H=-x^2+4x\)

\(\Rightarrow H=-x^2+4x-4+4\)

\(\Rightarrow H=-\left(x-2\right)^2+4\)

Ta thấy: \(-\left(x-2\right)^2\le0\)với mọi x

\(\Leftrightarrow-\left(x-2\right)^2+4\le4\)với mọi x

Dấu "=" xảy ra khi \(\left(x-2\right)^2=0\)

                        \(\Leftrightarrow x=2\)

Vậy................