Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)=0\)
\(\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow\left(x^2-3x\right)+\left(-2x+6\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
\(\dfrac{4x+2}{4x-2}+\dfrac{3-6x}{6x-6}\left(dkxd:x\ne\dfrac{1}{2};x\ne1\right)\)
\(=\dfrac{2\left(2x+1\right)}{2\left(2x-1\right)}+\dfrac{3\left(1-2x\right)}{6\left(x-1\right)}\)
\(=\dfrac{2x+1}{2x-1}+\dfrac{1-2x}{2\left(x-1\right)}\)
\(=\dfrac{2x+1}{2x-1}+\dfrac{1-2x}{2x-2}\)
\(=\dfrac{\left(2x+1\right)\left(2x-2\right)}{\left(2x-1\right)\left(2x-2\right)}+\dfrac{\left(1-2x\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x-2\right)}\)
\(=\dfrac{4x^2-2x-2}{\left(2x-1\right)\left(2x-2\right)}+\dfrac{-4x^2+4x-1}{\left(2x-1\right)\left(2x-2\right)}\)
\(=\dfrac{4x^2-2x-2-4x^2+4x-1}{\left(2x-1\right)\left(2x-2\right)}\)
\(=\dfrac{2x-3}{\left(2x-1\right)\left(2x-2\right)}\)
\(=\dfrac{2x-3}{4x^2-6x+2}\)
\(\frac{2x-1}{x}+\frac{3-x}{4}=2\)
\(ĐKXĐ:x\ne0\)
\(MTC:4x\)
\(\frac{4\left(2x-1\right)}{4x}+\frac{x\left(3-x\right)}{4x}=\frac{8x}{4x}\)
\(\Rightarrow4\left(2x-1\right)+x\left(x-3\right)=8x\)
\(\Leftrightarrow8x-4+x^2-3x=8x\)
\(\Leftrightarrow8x-4+x^2-3x-8x=0\)
\(\Leftrightarrow x^2-3x-4=0\)
\(\Leftrightarrow x^2-4x+x-4=0\)
\(\Leftrightarrow\left(x^2-4x\right)+\left(x-4\right)=0\)
\(\Leftrightarrow x\left(x-4\right)+\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\)
Hoặc\(\hept{\begin{cases}x-4=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(N\right)\\x=-1\left(N\right)\end{cases}}}\)
Vậy tập nghiệp của pt là \(S=\left\{-1;4\right\}\)
a,
\(\Leftrightarrow\left(\left(2x^2-4\right)-2\left(x+1\right)^2\right)< 0\)
\(\Leftrightarrow2x^2-4-2\left(x^2+2x+1\right)< 0\)
\(\Leftrightarrow2x^2-4-2x^2-4x-2< 0\)
\(\Leftrightarrow-4x-6< 0\)
\(\Rightarrow x+\dfrac{3}{2}>0\)
\(\Rightarrow x>-\dfrac{3}{2}\)
\(x\in\left\{-\dfrac{3}{2};\infty\right\}\)
b/
\(\Leftrightarrow\left(x-3\right)^2-5+6x< 0\)
\(\Leftrightarrow x^2-6x+9-5+6x< 0\)
\(\Leftrightarrow x^2+4< 0\) ( điều này vô lý vì không có giá trị nào của x khiến x^2+4<0)
từ trên suy ra:
không có giá trị nào của x để pt này đúng .
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\left(ĐKXĐ:x\ne5\right)\)
\(\Rightarrow3\left(4x-3\right)=29\left(x-5\right)\)
\(\Leftrightarrow12x-9=29x-145\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x+136=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\left(tm\right)\)
Vậy \(S=\left\{8\right\}\)
\(2,\dfrac{2x-1}{5-3x}=2\left(ĐKXĐ:x\ne\dfrac{5}{3}\right)\)
\(\Rightarrow2x-1=2\left(5-3x\right)\)
\(\Leftrightarrow2x-1=10-6x\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x-11=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{11}{8}\right\}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2x-2}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{3x-2}{x-1}\)
\(\Rightarrow4x-5=3x-2\)
\(\Leftrightarrow4x-5-3x+2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{3\right\}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne-5\right)\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+15x+25}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{15x+25}{2x\left(x+5\right)}=0\)
\(\Rightarrow15x+25=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=\dfrac{-5}{3}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{-5}{3}\right\}\)
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-29\left(x-5\right)}{3\left(x-5\right)}=0\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\)
\(2,\dfrac{2x-1}{5-3x}=2\)
\(\Leftrightarrow\dfrac{2x-1-2\left(5-3x\right)}{5-3x}=0\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5-2\left(x-1-x\right)}{x-1}=0\)
\(\Leftrightarrow4x-5-2x+2+2x=0\)
\(\Leftrightarrow4x=3\)
\(\Leftrightarrow x=\dfrac{3}{4}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow2x^2+10x+5x+25-2x^2=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=-\dfrac{5}{3}\)
ta có: H = 4x - x^2 = - (x^2 -4x) = -(x^2-4x+4-4) = -(x-2)^2 + 4
mà \(-\left(x-2\right)^2+4\le4\)
Để H có GTLN
=> -(x-2)^2 + 4 = 4
-(x-2)^2 = 0
=> x - 2 = 0 => x = 2
KL:...
Ta có: \(H=4x-x^2\)
\(\Rightarrow H=-x^2+4x\)
\(\Rightarrow H=-x^2+4x-4+4\)
\(\Rightarrow H=-\left(x-2\right)^2+4\)
Ta thấy: \(-\left(x-2\right)^2\le0\)với mọi x
\(\Leftrightarrow-\left(x-2\right)^2+4\le4\)với mọi x
Dấu "=" xảy ra khi \(\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
Vậy................
a) \(\left(x+2\right)^2=4\left(2x-1\right)^2\)
\(\left(x+2\right)^2-4\left(2x-1\right)^2=0\)
\(\left(x+2\right)^2-\left[2\left(2x-1\right)\right]^2=0\)
\(\left(x+2\right)^2-\left(4x-2\right)^2=0\)
\(\left(x+2-4x+2\right)\left(x+2+4x-2\right)=0\)
\(6x\left(-3x+4\right)=0\)
\(\Rightarrow6x=0\) hoặc \(-3x+4=0\)
*) \(6x=0\)
\(x=0\)
*) \(-3x+4=0\)
\(3x=4\)
\(x=\dfrac{4}{3}\)
Vậy \(x=0;x=\dfrac{4}{3}\)
b) \(4x\left(x-2019\right)-x+2019=0\)
\(4x\left(x-2019\right)-\left(x-2019\right)=0\)
\(\left(x-2019\right)\left(4x-1\right)=0\)
\(\Rightarrow x-2019=0\) hoặc \(4x-1=0\)
*) \(x-2019=0\)
\(x=2019\)
*) \(4x-1=0\)
\(4x=1\)
\(x=\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4};x=2019\)
\(=x\left(x^2+4x+4\right)< 0\\ x\left(x+2\right)^2< 0\\ TH1:x< 0\\ TH2:x+2< 0\\ x< -2\)
\(x\left(x^2+4x+4\right)=x\left(x+2\right)^2< 0\Rightarrow x< 0\)vì (x+2)^2 >= 0