\(x^3-y^3-z^3-3xyz\)

Giúp mk chứng minh hằng đẳng thức này với

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2018

Ý bạn là phân tích đa thức thành nhân tử hả.

\(x^3-y^3-z^3-3xyz\)

\(=\left(x^3-3x^2y+3xy^2-y^3\right)-z^3+3x^2y-3xy^2-3xyz\)

\(=\left(x-y\right)^3-c^3+3xy\left(x-y-z\right)\)

\(=\left(x-y-z\right)\left[\left(x-y\right)^2+\left(x-y\right)z+z^2\right]+3xy\left(x-y-z\right)\)

\(=\left(x-y-z\right)\left(x^2-2xy+y^2+xz-yz+c^2+3xy\right)\)

\(=\left(x-y-z\right)\left(x^2+y^2+xz-yz+c^2+xy\right)\)

21 tháng 5 2020

Ta có: 

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)

\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(x+y\right).z-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yx-3xz-3yz-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

=> \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz\)

19 tháng 7 2018

\(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\)

\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3\)

\(=6a^2b+2b^3\)

\(=2b\left(3a^2+b^2\right)\)

19 tháng 7 2018

a/\(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=\left(a^3+3a^2b+3ab^2+b^3\right)-\left(a^3-3a^2b+3ab^2-b^3\right)\)\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^2\)

\(=6ab^2+2b^3\)(rút gọn hết)

b/\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-2xz+2xz+2xy-3xz-3yz-3xy\right).\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

Hok tốt

24 tháng 7 2017

\(VT=\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)=VP\)

Vậy \(\left(x+y\right)^2-y^2=x\left(x+2y\right)\)

24 tháng 7 2017

\(VT:\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)=VP\left(đpcm\right)\)

27 tháng 7 2018

Chỗ dấu bằng thứ hai sai nên bạn làm cũng chưa đúng

x^6 -y^6 = (x^2-y^2)(x^4 +x^2 .y^2 + y^4)

Bạn hiểu ra chỗ sai của mình chưa.Chúc bạn học tốt.

27 tháng 7 2018

cho minh xin de

17 tháng 4 2020

nếu x+y+z=0 thì x^3+y^3+z^3=3xyz

TL
24 tháng 3 2020

Ta có: x+y+z=0⇔x+y=−z

⇔(x+y)3=(−z)3

⇔x3+3x2y+3xy2+y3=−z3

⇔x3+y3+z3=−3x2y−3xy2

⇔x3+y3+z3=−3xy(x+y)

⇔x3+y3+z3=−3xy(−z)=3xyz(đpcm)

29 tháng 6 2017

Ta có : x+y+z = 0

\(\Rightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=\left(-z\right)^3\)

\(\Leftrightarrow x^3+y^3+z^3=-3x^2y-3xy^2\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(-z\right)\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)

29 tháng 6 2017

x + y + z = 0

x + y = -z

( x + y )3 = ( -z )3

x3 + 3x2y +3xy2 + y3 = -z3

x3 + y3 + z3 = 3x2y - 3xy2

x3 + y3 + z3 = - 3xy ( x + y )

x3 + y3 + z3 = -3xy. ( -z )

x3 + y3 + z3 = 3xyz ( đpcm )